

Object-Oriented Application
Development with

VisualAge for C++ for OS/2

-.gr+ti-x. v.i:^RE.REbe `gas+3:as§S` i a `~ *` r±-§'` `,eii§€ ~.{,§-EL>€L+ as.ae£* ¢~+#'` £.:*` -.`` ~asfiife¥esi¥±{r^ul `E ``usfi` ,¢v€~€..iffi``rfit

#£¢P d£REREifefi ,FS`¥ I fiREas [±„E6 exE ± ts© ,.prRE 'rf t Svhigr:¥¥+H P±¥RE"asffi `*T~'anifeT

Bitterer, Brassard, Nadal, and Wong
VisualAge and Transaction Processing in a Client/Server Errvironment

Bitterer, Hamada, Oosthuizen, Porciello, and Rambek
AS/400 Application Development with VisualAge for Smalltalk

Carrel-Billiard, Jakab, Mauny, and Vetter
Object-Oriented Application Development with VisualAge for C+ + for OS/2

Fang, Chu, and Weyerhauser
VisualAge for Smalltalk SOMsupport.. Developing Distributed Object Applications

Fang, Guyet, Haven, Vilmi, and Eckmann
VisualAge for Smalltalk Distributed.. Developing Distributed Object Applications

Object-Oriented Application
Development with

VisualAge for C++ for OS/2

Mare CarrellBilliard
Peter Jakab
Isabelle Mauny
Rainer Vetter

:i=-J -L- r +
_ _ - _____-I:=---- I-- ______ I -------___ __ - I

___ ____ ,

INTERNATIONAL TECHNICAL SUPPORT ORGANIZATION
SAN JOSE, CALIFORNIA 95120

PRENTICE HALL PTR
UPPER SADDLE RIVER, NEW JERSEY 07458

© Copyright International Business Machines Corporation 1995, 1996. All rights reserved.

Note to U.S. Government Users -Documentation related to restricted rights -Use, duplication, or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

This edition applies to Version 3.0 of the VisualAge for C++ for OS/2 product set, and to all subsequent releases and mod-
ifications until otherwise indicated in new editions.

Comments about ITSO Technical Bulletins may be addressed to:
IBM Corporation ITSO, 471/80-E2, 650 Harry Road, San Jose, California 95120-6099

For information about redbooks:

http : / /www . redbooks . ibm . com/ redbooks

©
Send comments to:

Published by Prentice Hall PTR

Prentice-Hall, Inc.

A Simon & Schuster Company

Upper Saddle River, NJ 07458

Acquisitions Editor: Michael E. Meehan

Manufacturing Manager: Alexis R. Heydt

Cover Design: Andreas Bitterer, Marc Carrel-Billiard, Design Source

Copy Editors: Maggie Cutler, Mary Lou Nohr

Production Supervision:Patti Guerrieri

The publisher offers discounts on this book when ordered in bulk quantities. For more information, contact:
Corporate Sales Department, Prentice Hall FTR, One Lake Street, Upper Saddle River, NJ 07458
Phone: 800-382-3419; FAX: 201-236-7141 ; E-mail (Internet): corpsales@prenhall.com

For book and bookstore information

I . . RE:f!.i.!i,. i

http://www.prenhall.com

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-242447-9

Prentice-Hall International (UK) Limited, Lo"do#

Prentice-Hall of Australia Pty. Limited, Syd#cy

Prentice-Hall Canada Inc., roro#Jo

Prentice-Hall Hispanoamericana, S.A., Mc:¥!.co

Prentice-Hall of India Private Limited, IVcw Dc/fe!.

Prentice-Hall of Japan, Inc., rokyo

Simon & Schuster Asia Pte. Ltd., Sz.#gaporc

Editora Prentice-Hall do Brasil, Ltda., I?I.o dc /cz#czto

To my wife, Dominique, for her unfailing support and understanding
and to my children, Fanny and Thomas, for their patience and their
cheerful smiles. To my parents for giving me a passion.

Marc

This book is dedicated to my wife Mabel and my children Jessie and
Justin for their support during the summer of 1995 when I was absent
from home for long periods of time. Their love and understanding
made my participation in writing this book possible.

Peter

To teamwork and friendship that were our companions all along this
writing adventure. I dedicate this book to my family and all those who
can understand this little sentence: "A la Gaude!''.

Isabelle

To my family and all with whom we are joined together in friendship.

Rainer

V

Contents
Special Notices .. xix

Preface..xxiii

What Makes This Book Different xxiii
How This Book Is Organized ... xxiii
Related Publications .. xxv
International Technical Support Organization Publications xxvi
International Technical Support Organization on the World Wide Web (WWW) . . xxvii
International Technical Support Organization on the Internet xxvii
VisualAge for C++ Support ... xxviii
About the Authors .. xxix

Acknowledgments...xxix

Part 1. Introduction to the VisualAge for C++ Hnvironment 1

Chapter 1. Visua]Age for C++ and Application Development
Visual Programming ...
Object Talk ...

Objects..

Classes..

Inheritance...

Encapsulation..

Polymorphism..

Object-Oriented Methods
Visual Modeling Technique

Analysis...

Design...

Implementation...

Visual Programming with VisualAge for C++

Chapter 2. Getting Started in a VisuaIAge for C++ Environment
Managing Your Project ..

WorkFrame/2 Concepts
Creating a Pro].ect with WorkFrame/2
Creating Composite Projects
The MakeMake and Build Facilities
Customizing a Pro].ect with Build Smarts
Migrating Existing Projects

Generating Your Code ..
Using Visual Builder
Accessing D82 Tables with Data Access Builder
Building from Blocks

Building Your Application
Editing Your Code

Compiling..

Linking..

.3

.4

.6

.6

.7

.8
10
10
11
13
14
15
15
16

19
20
20
23
25
26
26
27
27
27
36
37
40
40
41
45

vii

Understanding Your Code
Browsing Your C++ Hierarchy
Debugging Your Code
Performance Analysis

.46

.47

.51

.54

Part 2. Developing with VisualAge for C++ 59

Chapter 3. Analysts at Work
Collecting the Material

Problem Domain
Requirement Specifications

Thread and Subplots
Use Case Model

User Interface Prototype
Defining Roles

Patterns and 'lypes
Finding Objects
Class Dictionary and CRC Cards

Defining Interactions and Relations
Defining Contexts

Chapter 4. Designers at Work
System Design

Partition Object Model into Subsystems
Map Subsystems to VisuaIAge for C++ Subapplications .
Select the Implementing Platform
Define Data Placement and Data Processing
Refine Contexts

Object Design

Design the Solution Domain Classes
Design the Nonvisual Parts
Design the GUI with the Visual Parts
Design the Persistent Data

Refining the Design Model
Refining the Property Retrieving Scenario
Refining the Property Creation Scenario
Refining the Property Update Scenario
Refining Roles

.61

.62

.63

.64

.67

.68

.70

.71

.72

.73

.74

.76

.81

.83

.85

.85

.86

.87

.88

.88

.89

.89

.90

.91

.92

.92

.95

.97
101
102

Part 3. Building the Visual Realty Application 105

Chapter 5. Setting Up the Development Environment
WorkFrame/2 Project Organization
File Organization
Creating and Customizing the DACSPRJ Project

Adding the CPPSource File Type
Modifving the CSource File Type
Adding the C Compiler Action
Modifving the C++ Compiler Action

viii

.............. 107

.............. 108

.............. 109

.............. 110

.............. 112

.............. 112

.............. 113

.............. 113

VisualAge for C++ for OS/2

Changing SQL Precompile Action Flags
Changing Compilation and Linking Flags
Setting the Build Facility Options

Creating and Customizing the Visual Realty Projects
Creating the Visual Realty Main and Subsystem Projects
Creating the Help Project
Customizing the Visual Realty Main and Subsystem Projects

Creating and Customizing the Dacslib Project
Setting Up the Linking Flags
Creating a Library Definition File

Naming Conventions ..
Run-time Considerations

Chapter 6. Mapping Relational Tables Using Data Access Builder
Mapping Tables to Parts
Parts Produced ...

Using Data Access Builder Parts with Visual Builder

Chapter 7. Creating Visual Parts
AAddressview..

Tabbing from One Part to Another
Promoting a Part Feature

Apropertyview...

Using a Notebook Control
Building the Pages of a Noteboook,

Apropertycreateview...,
Apropertyupdateview...,
ADeleteDialogview...

ApropertysearchResultview....................................,
Using a Container ...

Adding Columns to a Container ,
Apropertysearchparameterview................................,

Using Check Box Control ,
Using Collection Combination-Box Control

AUpLoadview...

ApropertyManagementview.....................................
Using Graphic Push Buttons

ALogonview..

ARealsettingsview...
ARealMainview...

Chapter 8. Creating Nonvisual Parts
AMarketinglnfo...

Event Handler ..

Writing the Code for Your Event Handler Class
Creating a Class Interface Part from Your Event Handler Class
Using Your Keyboard Handler

Chapter 9. Connecting the Parts
Apropertyview..

Contents

114
114
115
115
115
117
118
123
124
124
124
125

127
129
135
136

143
147
152
154
156
157
158
172
175
178
182
182
185
188
189
189
196
199
200
202
206
208

213
214
220
222
223
224

227
228

ix

Selecting a Video File
Adding Multimedia Features
Connecting a Nonvisual Part to a Visual Part
Design Considerations

Apropertycreateview..
Using Variable Parts
Managing Database Connection
Adding Fly-over Help to a Control
Passing a Parameter to a Connection
Using Custom Logic

Apropertyupdateview.......................................
Showing Exception in a Message Box
Using Sample Parts
Using the Member Function Connection
Updating a Window Title Dynamically

ADeleteDialogview..
ApropertysearchResultview..................................

Selecting Properties from the Database
Retrieving Information Across Multiple Tables
Using an Object Factory to Update the Database
Deleting a Property

ApropertyDelete..

Using the Composition Editor to Build a Nonvisual Part
Apropertysearchparameterview...............................

Managing the User Input
Building the Clause
Using a Message Box to Display the Clause

AUpLoadview..

ApropertyManagementview..................................
ALogonview...

ARealsettingsview..
ARealMainview..

Logging on to the Database
Accessing the Application Settings and the Property Subsystem.
Tearing Off an Attribute
Adding Help to Your Application

Chapter 10. If You Want to Know More about Visual Builder....
Notification Framework Concepts
How Visual Builder Uses the Notification Framework

Scenario for a Connection
Using Connections as Notifiers

From Classes to Nonvisual Parts in Visual Builder
Describing the Part Interface
Modifving Your Code

When Parts Become Observers

X

.228

.230

.233

.235

.236

.243

.246

.247

.248

.249

.251

.259

.259

.260

.264

.264

.265

.267

.268

.271

.275

.278

.279

.283

.284

.285

.292

.298

.302

.305

.305

.310

.310

.313

.316

.318

.323

.323

.324

.325

.329

.330

.332

.336

.337

VisualAge for C++ for OS/2

Appendix A. Installing the Application 341

Appendix 8. OMT Notation ... 343

Appendix C. Database Definition 347

Appendix D. Class Dictionary .. 353
Visual Parts ... 354

Nonvisual Parts .. 354

Appendix E. Source Listings ... 357
Buildclause member function ... 358
Flat File Class ... 358

Glossary..367

List of Abbreviations .. 377

Index..379

Contents XI

xii VisualAge for C++ for OS/2

Figures
1. Inheritance ..

2. VMT: A Complementary Approach to Object-Orientation
3. Interface to Alter Options for the VisualAge for C++ Compiler
4. ActionsfortheEditClass
5. Project Smarts Catalog Window: Presentation Manager Application
6. ExampleofcompositeProject
7. PrimitiveandCompositeParts
8. SamplePartlnterface:SmartHouse
9. Sample Connections: SmartHouse Monitoring System

10. Visual Builder: Composition Editor
11. Part Interface Editor: Attribute Creation
12. defaultButtonspanelCompositePart
13. Visual Builder: Class Editor
14. Database Access: From Mapping to Parts Generation
15. UserlnterfaceClassLibraryArchitecture
16. LPEX: Source Formatting and Dynamic Error Detection
17. Language-IndependentlmplementationwithSOM
18. Browser List Window: List Members with Inheritance
19. Browser Graph Window: Graph All Callers and Callees
20. Browser Graph Window: Graph All Includers
21. Visual Builder: Creating an Event-to-Member Connection
22. BreakpointListWindow
23. CallNestingDiagramWindow
24. DynamicCallGraphWindow
25. StatisticsWindow ...
26. UseCaseRepresentation
27. VisualRealtyUseCases
28. UserlnterfaceSamples
29. Event-Trace Diagram for the Record Property Use Case
30. StateTransitionDiagramofpropertyStatus
31. Analysis Object Model of the Visual Realty Application
32. FromAnalysistoDesign
33. VisualRealtySystemPlatform
34. DesignModel:RevealHiddenObjects
35. Design Object Model of the Property Subsystem: First Cut
36. Event-Trace Diagram for the Property Search Use Case
37. Design Object Model of the Property Subsystem: Second Cut
38. Event-Trace Diagram for the Property Creation Use Case
39. Design Object Model of the Property Subsystem: Third Cut
40. Event-Trace Diagram for the Property Update Use Case
41. Design Object Model of the Property Subsystem: Fourth Cut
42. Project Organization for the Visual Realty Application
43. Files OrganizationfortheVisualRealtyApplication
44. ChangeActionDialogWindow:CCompiler
45. TheVisualRealtyProjectView
46. DataAccessBuilderCreateClassesWindow
47. DataAccessBuilderMainWindow

.9
.14
.21

22
.24
.26
.28
29

.30

.32
33

.34
35

.37
38

.41

.45

.48

.49

.50
51

.52

.55
56
57

.68

.70

.71

.78

.79

.80

.84
88

.90
94

.96
97

.98
100
101
102
109
110
113
117
131
132

xiii

48. Data Access Builder Page Attribute of the Settings Notebook
49. Pop-upMenuGenerateOption
50. GeneralConnectionDialogCanvas
51. SimpleApplicationwithDataAccessBuilder
52. VisualRealtyApplicationinAction
53. ViewHierarchy

54. AAddressviewPart
55. TabbingOrderforAAddressview
56. Promote EntryFieldstreetText Attribute of AAddressview . .
57. ApropertyviewPart
58. NotebookforApropertyview
59. CharacteristicsPageUsingaViewport
60. EventHandlerListBox
61. AddressPage

62. DescriptionPage

63. VideoPage ...

64. MarketingPage

65. Apropertycreateview
66. Apropertyupdateview
67. ADeleteDialogview
68. ApropertysearchResultview
69. ContainerGeneralSettingsPage
70. ContainerColumnGeneralSettingsPage
71. Apropertysearchparameterview
72. OverridingtheasstringMethod
73. IstringGeneratorForpropertyFnDeclaration
74. AUpLoadview

75. ApropertyManagementview
76. IGraphicpushButtonGeneralSettingsPage
77. ALogonview ..

78. ARealsettingsview
79. ARealMainview

80. CreatingAMarketinglnfoNonvisualPart
81. MarketinglnfoSourceCodeDetail
82. UppercaseKBDHandlerHeaderFile
83. UppercaseKBDHandlerDefinition
84. Visual Builder: Importing kbdhdr.vbe Part Information File
85. SimpleApplicationwithHandler
86. ConnectionsforSelectingaVideoFile
87. Building a Pop-up Menu for the Multiple-Line Edit Control .
88. Connections between AMarketinglnfo and Marketing page .
89. ApropertycreateviewandltsSubparts
90. Attribute-to-Attribute connections in Apropertycreateview
91. Event-to-Action Connections in Apropertycreateview
92. Connection Order for the Create Push Button
93. SimpleViewtoDisplayPropertylnformation
94. Reusing the Property View from Another Part: First Try . . .
95. Simple PropertyViewwith ItsAssociatedVariables
96. Reusing the property view from Another part: Second Try .

XIV

.134

.135

.138

.139

.144

.145

.148

.154

.155

.156

.157

.159

.160

.164

.165

.166

.169

.173

.176

.178

.183

.185

.186

.189

.191

.192

.197

.199

.200

.203

.206

.208

.216

.219

.222

.223

.224

.225

.229

.232

.234

.237

.239

.241

.243

.244

.245

.245

.246

VisualAge for C++ for OS/2

97. Attribute-to-Attribute Connections in Apropertyupdateview. . .
98. Event-to-Action Connections in Apropertyupdateview
99. Connection Order for the Update Push Button
100. DaysonMarket Public Method Declaration
101® DaysonMarket Public Method Definition
102. Member Function Dialog Box
103. Querying the Database
104. Retrieving Information from Multiple Tables
105. Updating a Property
106. Deleting a Property
107. BuildingApropertyDelete
108. Order of connections for ApropertyDelete
109. Detail of the Class Editor
110. Code to Generate deleteEventld
111. Using ApropertyDelete Part
112. Number of Bedrooms Selection
113. Code Fragment of Buildclause Member Function
114. Subparts of Apropertysearchparameterview
115. Apropertysearchparameterview: The Big Picture
116. Using a Message Box to Display the Clause
117. Message Box Parameter
118. Using Message Box to Display a Warning Message
119. Message Box Displaying a Warning or Information Message . . .
120. AUpLoadview ...

121. Browsing the Iprofile Part's Features
122. ApropertyManagementview
123. Structure of a Profile
124. ARealsettings Part
125. Logon to the Database
126. Application Settings and Property Subsystem Access
127. Tearing Off an Attribute
128. Adding Help to the Application
129. Sample Window: Using an Attribute-to-Attribute Connection . .
130. Visual Builder Parts Initialization Process
131. Visual Builder Notification Flow
132. Sample2 Window: Using a Message Box for Exception Handling
133. Part-New Window: Creating a FlatFile Nonvisual Part
134. Part Interface Editor Window: Creating an Attribute Definition
135. The defaultButtons Composite Visual Part
136. OMT Notation: Object Model
137. OMT Notation: State Diagram
138. Buildclause Member Function: Declaration
139. Flat File Class: H File
140. Flat File Class: HPP File
141. Flat File Class: CPP File
142. Flat File Class: HPV File
143. Flat File Class: CPV File

252
256
258
261
262
263
267
269
273
275
278
281
282
282
283
285
286
288
290
293
294
295
297
299
302
303
306
307
310
313
317
320
324
327
328
329
333
334
337
344
345
358
358
359
361
363
364

XV

Xvl VisualAge for C++ for OS/2

Tables
SmartHouse Connections
Extended CRC Cards for Buyer
Extended CRC Cards for Property
Extended CRC Cards for Sale Transaction
Deliverables of Analysis and Design
Relational Table Identifiers a a . . .
Constructing AAddressview Part
Building Apropertyview As a Notebook
Building the Characteristics Page
Building the Address Page
Building the Description Page
Building the Video Page
Building the Marketing Page
Promoted Features of Apropertyview
Constructing Apropertycreateview Part
Constructing Apropertyupdateview Part
Building ADeleteDialogview
Building ApropertysearchResultview: Building a Container
Building ApropertysearchResultview: Adding Container Columns
Building Apropertysearchparameterview
Building AUpLoadview
Building ApropertyManagementview
Building ALogonview
Building ARealsettingsview
Building ARealMainview
Table Attributes ...

Implementing a Video File Selection
Implementing Multimedia Features
Building a Pop-up Menu
Using AMarketinglnfo Part
Adding Parts in Apropertycreateview
Making Attribute-to-Attribute Connections in Apropertycreateview
Making Event-to-Action Connections in Apropertycreateview
Adding Subparts in Apropertyupdateview
Making Attribute-to-Attribute Connections in Apropertyupdateview
Making Event-to-Action Connections in Apropertyupdateview
Adding Parts to Query the Database
Adding Parts to Retrieve Information from Multiple Tables
Connecting Parts to Retrieve Property Information
Updating the Database
Connecting Parts to Update Property Information
Adding Parts to Delete a Property from the Database
Connecting Parts to Delete a Property from the Database
Adding Parts to Build ApropertyDelete
Connecting Parts to Build ApropertyDelete
Adding Parts to Build Apropertysearchparameterview
Connecting Parts to Build Apropertysearchparameterview
Using a Message Box to Display the Clause
Using Message Box to Display a Warning Message
Using Message Box to Display a Warning or Information Message . .

31
75
76
76
84

134
150
157
161
164
165
166
169
171
173
176
180
183
186
192
197
201
203
206
209
216
229
230
232
234
237
239
242
252
254
256
267
269
270
273
274
276
276
279
280
288
290
293
295
297

xvii

51. BuildingAUpLoadviewPart
52. BuildingApropertyManagementviewPart
53. BuildingARealsettingsviewPart
54. AddingPartsfortheLogonFunction
55. ConnectingPartsfortheLogonFunction

5 S : 8g#Lne%t:na:tfat:t# spsrtohpeer£;ps]Lcbast;%:es;etatfndgs eat:±dn:sroAPcecretsys :TP.sy:t.e.T
58. AddingHelptotheApplication
59. AddingHelpResourceNumbersforARealMainview
60. AddingHelpResourceNumbersforARealsettingsview

xviii

299
303
307
311
311
313
315
320
321
321

VisualAge for C++ for OS/2

Special Notices

This publication is intended to help project leaders to better under-
stand the Visua]Age for C++ environment. The information in this
publication is not intended as the specification of any programming
interfaces that are provided by VisualAge for C++. See the PUBLICA-
TIONS section of the IBM Programming Announcement for VisualAge
for C++ for more information about what publications are considered
to be product documentation.

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, pro-
gram, or service may be used. Any functionally equivalent program
that does not infringe any of IBM's intellectual property rights may be
used instead of the IBM product, program, or service.

Information in this book was developed in conjunction with use of the
equipment specified and is limited in application to those specific
hardware and software products and levels.

IBM may have patents or pending patent applications covering sub-
ject matter in this document. The furnishing of this document does not
give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500
Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to
any formal IBM test and is distributed AS IS. The information about
non-IBM (VENDOR) products in this manual has been supplied by the
vendor and IBM assumes no responsibility for its accuracy or com-
pleteness. The use of this information or the implementation of any of
these techniques is a customer responsibility and depends on the cus-
tomer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the
same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so
at their our risk.

Any performance data contained in this document was determined in
a controlled environment; therefore, the results that may be obtained
in other operating environments may vary significantly. Users of this
document should verify the applicable data for their specific environ-
ment.

XIX

The following document contains examples of data and reports used in
daily business operations. To illustrate them as completely as possible,
the examples contain the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is
entirely coincidental.

Reference to PTF numbers that have not been released through the
normal distribution process does not imply general availability. The
purpose of including these reference numbers is to alert IBM custom-
ers to specific information relative to the implementation of the PTF
when it becomes available to each customer according to the normal
IBM PTF distribution process.

The following terms are trademarks of the International Business
Machines Corporation in the United States and/or other countries:

AIX®

Cset ++TM

CUATM

Presentation ManagerTM

Multimedia Presentation Manager/2TM

SOMobjectsTM

Workplace She||TM

WebExplorerTM

Common User Acess

D82TM

D82/2TM

IBM®

OS/2®

OS/2 Warp®

VisuaIAgeTM

WorkFrame/2TM

The following terms are trademarks of other companies:

WindowsTM is a trademark of Microsoft® Corporation.

PC DirectTM is a trademark of Ziff Communications Company and
is used by IBM Corporation under licence.

UNIX® is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

C-busTM is a trademark of Collary, Inc.

i386TM and PentiumTM are trademarks of Intel Corporation.

SmalltalkTM is a trademark of xerox Corporation.

Motif® is a registered trademark of Open Software Foundation.

Solaris® is registered trademark of Sun Microsystems.

Other trademarks are trademarks of their respective companies.

XX VisualAge for C++ for OS/2

The icons used in this book are from the ClipArt Collection of the
CorelDRAW! Version 3 CDROM.

Some videos provided with the sample application are extracted from
the CDROM Nitro Explosive Animationen © 1994 Data Becker.

Special Notices XXI

xxii VisualAge for C++ for OS/2

Preface

Welcome to the world of visual programming! With VisualAge for C++
for OS/2 you are ready to take the plunge into a radically new trend of
programming. If you have just bought your IBM VisualAge for C++
and you are dying to build your first serious application, you are read-
ing the right book. Indeed, learning VisualAge for C++ by example is
all this book is about. With VisualAge for C++, application construc-
tion has never been easier. Even the most complex applications can be
constructed from the large set of predefined parts from IBM Open
class. This book will show you how you can employ IBM VisualAge for
C++ for OS/2, Version 3.0 to implement software systems that have
been analyzed and designed by use of object-oriented methods. It
introduces the Visual Modeling Technique, a complementary approach
of existing object-oriented development techniques and illustrates how
this approach is applied to build a real application featuring relational
database support, video and vivid sound capacity, and numerous
graphical controls for a truly intuitive graphical user interface.

What Makes This Book Different
This book explains how to develop an application from the require-
ments specifications up to its coding with VisuaIAge for C++. Through-
out the different chapters, you will be guided to develop your static
and dynamic object models, using the Visual Modeling Technique.
Then, you will translate your models visually in Visual Builder and
generate their code automatically. This book is neither just a book on
methodology nor just a book on programming: it is both of them!

For the first time, a book takes you by hand to roll out a complete
application development cycle. So put on your cap of analyst-designer-
developer and get ready for a trip to the visual programming world!

How This Book ls Organized
This book consists of three parts. The first part (chapters 1 and 2)
introduces concepts and terms that go with visual programming and
object-orientation and gives a first insight into the VisualAge for C++
development environment. In the second part (chapters 3 and 4), we
present the sample application that you will build in the last part.
This part is devoted to analyzing and designing the static and
dynamic model of the application to ease its implementation with
VisualAge for C++. The third part (chapters 5, 6, 7, 8, 9, and 10)

xxiii

How This Book ls Organized

makes up the majority of the book, teaching you how to use VisualAge
for C++ and its versatile tools to develop the sample application from
the ground up.
I Chapter 1, `VisuaIAge for C++ and Application Develop-

ment," on page 3
The first chapter welcomes you to the visual age of application
development. You learn something about the new trends of soft-
ware construction that have emerged during the past few years
and how VisualAge for C++ meets these new challenges.

I Chapter 2, "Getting Started in a VisualAge for C++ Environ-
ment," on page 19
The second chapter provides an overview of all of the tools and fea-
tures that are part of the VisualAge for C++ package. We do not
intend to replace the user's guides, but we want to give you the
keys that let you start off applying the tools.

I Chapter 3, "Analysts at Work," on page 61
This chapter and the next one invite you to play the role of a novel-
ist. We compare the analysis and design phases that precede the
implementation of a successful and neatly structured software
system to the introductory work to be done before writing a best-
seller. This chapter focuses on the analysis phase of our sample
application.

I Chapter 4, "Designers at Work," on page 83
This chapter concentrates on the design phase.

I Chapter 5, "Setting Up the Development Environment," an
page 107
This chapter describes the preparatory work that paves the way
for well-organized software construction. You are advised how to
favorably initialize your new project in the WorkFrame/2 environ-
ment.

I Chapter 6, "Mapping Relational Tables Using Data Access
Builder," on page 127
This chapter and the next two feature the Visual Builder! During
the development of this book, we en].oyed most dealing with this
tool and assume that you also will get excited when you read how
we succeeded in implementing the sample application. You will
reap the best benefit if you duplicate the implementation process
step by step following our instructions. In this chapter, you will
use Data Access Builder to bring persistency to your application
and enable your objects to be stored in a relational database.

XXIV VisualAge for C++ for OS/2

Belated Publications

D Chapter 7, "Creating Visual Parts," on page 143
This chapter will guide you in developing the graphical user inter-
face of your application, using the visual parts provided with
VisualAge for C++. Most of the parts are used in our sample appli-
cation, and you will be shown hints and tips to make the best of
them.

D Chapter 8, "Creating Nonvisual Parts," on page 213
Unlike other GUI development tools, Visual Builder allow you to
develop your business object as nonvisual parts. In this chapter,
we will show you how to develop the nonvisual parts that are used
in the sample application.

D Chapter 9, "Connecting the Parts," on page 227
Once you have built your visual and nonvisual parts, you are
ready to draw graphically the connections between them. In this
chapter, we show you how to connect your different parts to trigger
messages from one object to another to let your application per-
form. Then, you just need to generate automatically the C++
source code of your application and compile it! Throughout these
last three chapters, we will focus on showing how to map your
static and dynamic models from your detail phase to VisualAge for
C++.

I Chapterl0, "If You Want to Know More about Visual
Builder..., " on page 323
If your curiosity is still not satisfied or if you want to take a closer
look at some technical details, you should keep on reading. This
chapter answers some questions that you did not ask before, such
as.. Wh,at about the notiftcction frcuneu)orh? or Can I reu,se my leg-
acy code?

Related Publications

Preface

The publications listed in this section are considered particularly suit-
able for a more detailed discussion of the topics covered in this book.
rl Object-Oriented Software Engineering. A Use Case Dr.iven

Approczch by I. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard. Addison-Wesley Publishing Company, 1992. ISBN 0-201-
54435-0.

I OZ7y.ec£-Orze7?fed jl4lodezz77g cb77d Deszg7? by J. Rumbaugh, M. Blaha,
W. Premerlani, F. Eddy, and W. Lorenson. Prentice Hall, 1991.
ISBN 0-13-630054-5.

I Desjg7?Z77g OZ)y.ec£-Orje77£ecz So¢zuc!re by R. Wirfs-Brock, 8. Wilker-
son, and L. Wiener. Prentice Hall, 1990.

XXV

International Technical Support Organization Publications

I J14lode7-7t Sfrz/cfz/red A7}cEzyszs by E. Yourdon. Yourdon Press, Engle-
wood Cliffs, New Jersey, 1989.

rl 9bject-Oriehied Analysis and Design with Applications by a.
Booch. The Benjamin/Cummings Publishing Company, 1994.

rl Object Technology in Application Development by D. TkaLch & R.
Puttick. Benjamin/Cummings Publishing Company, 1994. ISBN 0-
8053-2572-5.

rl Visual Modeling Tlechnique~Object Tlech,nology Using Visual Pro-
grc!77}77ij7tg by D. Tkach, W. Fang, and A. So. Benjamin/Cummings
Publishing Company, 1995. ISBN 0-8053-2574-3.

rl Effective C++: 50 Specific Ways to ImprolJe Your Progrcuns and
Desjg7?s by S. Meyers. Addison-Wesley, 1992.

rl OS / 2 C++ Class Library, Power GUI Programming with C Set++
by K. Leong, W. Law, R. Love, H. Tsuji, and 8. 01son. VNR Com-
puter Library, 1993. ISBN 0-442-01795-2

TI C++ Programming Gui,de.
FI C++ User's Guide.

rl Open Cl,ass Library User's Guide.
rl Vi,sual, Buil,der User's Gui,de.

rl Building VisuaIAge for C++ parts for Fun cund Profit.

International Technical Support Organization Publi-
cations

rl Object Technology in Application Deijelopment , Ga2,4-42;90.
rl Client / Server Computing: Th,e Design and Coding of a Business

Appzjccb£Zo7t, GG24-3899.

A complete list of International Technical Support Organization publi-
cations, known as redbooks, with a brief description of each, can be
found as follows:

To obtain a catalog of ITSO redbooks, VNET users should type:

TOOLS SENDT0 WTSCPOK TOOLS REDB00KS GET REDB00KS CATALOG

Xxvl VisualAge for C++ for OS/2

International Technical Support Organization on the World Wide Web (WWW)

A listing of all redbooks, sorted by category, can also be found on MKT-
TOOLS as ITSOPUB LISTALLX. This package is updated monthly.

How to Order lTSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs by using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or
by faxing 1-800-445-9269. Visa and Master Card are accepted. Outside the
USA, customers should contact their local IBM office.

Customers may order hardcopy ITSO books individually or in customized
sets, called GBOFs, which relate to specific functions of interest. IBM
employees and customers may also order ITSO books in online format on
CD-ROM collections, which contain redbooks on a variety of products.

International Technical Support Organization on the
World Wide Web (WWW)

Internet users can find information about redbooks on the ITSO World
Wide Web home page. To access the ITSO Web pages, point your Web
browser (such as WebExplorerTM from the OS/2 3.0 Warp Bonuspak) to
the following:

http://www.redbooks.i.bin.com/redbooks t

IBM internal users may also download redbooks or scan through red-
book abstracts. Point your web browser to the internal IBM Redbooks
home page:

http : //w3 . i. tso . i. bin . com/redbooks/redbooks . html

International Technical Support Organization on the
Internet

If you do not have World Wide Web access, you can obtain the list of all
current redbooks through the Internet by anonymous FTP to:

ftp . al maden . i. bin . com
cd redbooks
get l.tsopub.txt

The FTP server, ffp.cIZ77?cbcze7i. Zb77t.co77?, also stores the sample from the
accompanying CD. To retrieve the sample files, issue the following
commands from the /reczboofas directory:

Preface xxvii

VisualAge for C++ Support

cd GG242593
b1.nary

get GG242593.EXE
a s c 1. 1.

get READ.ME

All users of ITSO publications are encouraged to provide feedback to
improve quality over time. Send questions about and feedback on red-
books to:

I REDBOOK at WTSCPOK
I REDBOOK@VNET.IBM.COM
D US185FWN at IBMMAln

VisualAge for C++ Support

VisualAge for C++ Service and Support is staffed by developers who
handle everything from how-to's to complex technical problems. The
resolution may take the form of education, a workaround, or a fix to
the product (Corrective Service Diskette, CSDs).

There are several ways to contact the VisualAge for C++ Service and
Support department electronically:
I CompuserveTM forums: GO OS2DF1,library section 4
D Internet

• anonymous logon to site ftp.software.ibm.com, directory:
ps/products/visualagecpp/fixes/V30

• sample URL: ftp://ftp.software.ibm.com/ps/products/visu-
alagecpp/fixes/v30

I Talklink (OS/2 Selected Fixes Area)
• 1-800-547-1283 for information (USA)
• 11800-465-7999 x228 for information (Canada)

I Developer's Cormection (DHVCON) CD
• Ordering information: 1-800-561-5293 (Canada) and 1-800-

6DE-VCON (USA)
• See also: http://www®austin.ibm.com/developer/programs/Dev-

Con/OS2/faqAE.html for world-wide ordering information
D IBM PC Co. BBS

• 1-919-517-00018,N,1
• 1-800-772-2227 for information

xxviii VisualAge for C++ for OS/2

About the Authors

About the Authors
Marc Carrel-Billiard, from IBM France, works at the IBM Interna-
tional Technical Support Organization in Sam Jose, California. You can
reach him by e-mail at carrel@vnet.ibm.com.

Peter Jakab works for the IBM Software Solutions Laboratory in Tor-
onto Canada. You can reach him by e-mail at pjakab@vnet.ibm.com.

Isabelle Mauny works in La Gaude (France) for the IBM EMEA Soft-
ware Technical Support. You can reach her by e-mail at isa-
mauny@vnet.ibm.com.

Rainer Vetter works in Stuttgart for the Developer Support Organiza-
tion of IBM Germany. You can reach him by e-mail at rvet-
ter@de.ibm.com.

Acknowledgments

Preface

This book would not have been possible without the help of the follow-
ing people who contributed information, resources, and technical
advice: Ueli Wahli and Waiter Fang, IBM ITSO Sam Jose, Sergio Hen-
rique Monteiro da Silva, IBM Brazil, Mike Polan, IBM Toronto,
George Decandio, Rich Kulp, Dale Nilsson, IBM Research 'Thiangle
Park.

Many thanks to Jens Tiedemann, ITSO Sam Jose Center Manager,
Petter Sommerfelt, ITSO Sam Jose Center DM/ST Manager, and Bar-
bara Isa, IBM Santa Teresa Lab, for getting this project started. Spe-
cial thanks to everyone at the ITSO Sam Jose Center, in particular
Elsa Barron, Mary Comianos, Stephanie Manning, Alan Tippett, and
Guido De Simoni for their continuous support and to Andi Bitterer for
designing the book cover and for speeding up the publishing process
through his former experience. We are extremely grateful to Maggie
Cuttler for meticulously editing our frenchy-germano interpretation of
the Shakespeare language and whose patience and support continues
to amaze us! Thanks also to Mike Meehan, and Patti Guerrieri at
Prentice Hall for his support and to Lou Evart at Softline Interna-
tional Inc. for making this book look like a book.

XXIX

Acknowledgments

XXX VisualAge for C++ for OS/2

Part i

®++ Environment
We are condemned, to live in interesting times.

-Chinese Proverb

Where are the good old days? Those days when computer vendors pro-
vided not only mainframes with appropriate operating systems but
also matching software tools to extend the base equipment. When
salesmen led happy lives supporting their two or three favorite cus-
tomers. When application developers could focus on database transac-
tions, concentrate their efforts on implementing the business logic,
and forget about the user interface-because terminals behaved like
typewriters, and the poor person who was allowed to give some piece
of input felt like an external device, closely connected to the applica-
tions. Those days, when programmers as software gurus hacked thou-
sands of lines of read-only code into their editors, are gone.

il

Look how times have changed! More people work out of their home
offices, where they write at least a few lines of code in their preferred
languages and fiddle with configuration files to tailor their individual
environments. New technologies provide screens with brilliant graphi-
cal views of the user interface. Under constraints, programmers must
build complex programs and be responsive to new requirements or
changing environments. And most challenging of all, thousands of
hardware and software suppliers freely offer their products but show
little concern for connectivity.

Yes, those good old days have gone, and what we need right now are
new tools and techniques to develop mission-critical applications that
can run on various platforms and be easily adapted to new require-
ments. Otherwise, the software crisis will never end.

2 VisualAge for C++ for OS/2

I)eveloplnent
When we look at the manufacturing industry, we find that many man-
ufacturers use components to build their products. We discover that
many standardized elements, such as bolts and nuts, can be pur-
chased anywhere. We learn that companies use the same component
for different products; for example, car manufacturers use the same
rear-view mirror for all of their models or the same clutch for many of
their models. We realize that, before going into actual production,
engineers build a mock-up that reveals possible construction faults.

When we look at the software industry, we find that many new prod-
ucts are built from scratch, and for a number of reasons: A new pro-
gramming language appears that is supposed to easily solve problems
of a certain domain, an application requires a new database system
that causes many changes in existing software, a new team member
arrives with new and better ideas, or an old team member leaves the
company, accompanied by all of his or her undocumented knowledge.

3

Visual Programming

We discover that there are no standardized software modules on which
programmers can rely. We learn that there are many function collec-
tions, so-called program libraries, that help deal with various software
domains, such as databases, networks, communications, and graphi-
cal user interfaces (Guls). If programmers want to use those libraries,
however, they must laboriously look for each function and its parame-
ters, 1eafing through multivolume manuals. Furthermore, if program-
mers mix libraries from different producers, they are often confronted
with compatibility problems, such as duplicate names.

VisualAge for C++ does not do away with low-level function libraries
and cannot prevent library producers from using the same names, but
it supports the building of well-designed models and software parts
that can be reused in multiple applications and on different hardware
and software platforms.

Visual Programming

During the past 10 years, software designers have enriched the pre-
sentation of operating systems on personal computers and worksta-
tions, providing users with Guls. At the same time, software
developers have begun to accommodate their applications to this new
environment.

The benefits of Guls from the user's perspective are obvious:
I Users no longer have to type command lines with many argu-

ments and cryptic options.
I Users can control applications more intuitively.
I Users can simultaneously look at different views.
I Applications look polished and provide a consistent interface.

Programmers, however, must deal with hundreds of new functions
that exploit the capabilities of the GUI, and they must cope with a
new programming approach: event-driven programming.

In the event-driven programming paradigm, programmers send mes-
sages to graphical elements, and, if an event occurs, the graphical sys-
tern sends a message to a function that programmers must provide.
So, from the developer's perspective, the disadvantages of a GUI also
are obvious:

I New concepts must be learned quickly.
I Complexity increases.
I Thus, development time increases.

4 VisualAge for C++ for OS/2

Visual Programming

To shorten both the learning curve and development time, some large
and small software companies alike offer tools that enable program-
mers to develop applications visually. Thus, programmers do not have
to invoke their editors to start writing a new program; they can build
the GUI by designing it on their screens. But, of course, there is more
than the GUI-programmers must be able to add business logic and
data access transactions. The trouble begins exactly at this point.
With most existing tools, programmers can no longer develop visually;
they must provide the code manually. Using VisualAge for C++, how-
ever, programmers can continue to work visually, because they have
the components for building not only a GUI but also the entire appli-
cation, including database access and multimedia features.

Before you can enjoy the powerful tools of VisualAge for C++, you
should be acquainted with object-oriented application development,
an approach that has begun to emerge as the software world becomes
more and more complex. The GUI challenges us, as does the need for
remote data access, with its underlying communication protocols, and
the fact that we cannot quickly rewrite existing code to adapt it to a
new hardware or software environment. We need methods and tools to
help us comprehend and deal with this challenging complexity.

Instead of decomposing huge applications into procedures, today's
software specialists understand problems as assemblies of objects.
This approach simplifies their views of problems and helps translate
those views into software. Object-oriented languages, in which the
concept of objects is inherent, support programmers in their transla-
tion efforts.

Programmers do not necessarily have to use an object-oriented lan-
guage; they could implement objects and their behavior by using a
procedural language. Procedural languages, however, involve a cer-
tain degree of danger; namely, they do not hinder programmers from
arbitrarily accessing objects. Programmers can directly modify an
object's data during the execution of every module, so they must alter
many modules whenever an object changes its behavior or data struc-
ture.

With object-oriented languages, programmers can access an object's
data only within certain modules, so they know where to apply the
changes. In addition, because the object-oriented approach includes an
analysis and design phase that programmers must go through before
they start writing programs, they are unlikely to write poorly struc-
tured code. In this book we explain all phases of the object-oriented
approach and show you how to put the approach into practice with the
help of visualAge for C++.

Chapter i. VisualAge for C++ and Application Development 5

Object Talk

Object Talk
In this section, we introduce some object-oriented terms and concepts
that we use throughout this book. You will not find an in-depth discus-
sion of the object-oriented approach to software development or the
definition of every object-oriented term. If you are interested in an
extensive explanation of object-orientation, we recommend that you
consult the books listed in the Related Publications section.

Objects

6

In our real world, an object is, according to Websfer's DZc£Zo77cLry:

Something perceptible, especially to the sense of touch or uision.

Indeed, according to this definition, we have a large assortment of
objects! Let us take a car as an example. If you ask two people to
describe a certain car, they will probably give two completely different
answers, on the basis of their knowledge, their way of looking at and
evaluating things, and their interests. A passionate driver will tell you
about the car's motor and give you many other technical details about
the internal workings of the car. A person who has never driven a car
will tell you about the color of the car, its estimated length, width, and
height, and anything else that is visible. No one, however, can give a
"correct" description that encompasses all properties of a car. Even a
car's manufacturer, who knows every element of the car, would fail to
describe it correctly, because he or she would not know its current
mileage or the amount of missing tire rubber. Objects in our real world
have an infinite number of attributes and purposes. A car's purpose is
as a driving machine, but it also can be (mis)used, as a dog house, for
example.

In driving schools, instructors describe a car by emphasizing its func-
tion and explaining how to handle the steering wheel, gearshift, and
pedals and how to interpret the indicators on the dashboard. In tech-
nical terms, we can say that instructors explain the interface of the
car, how different input parameters influence the car's behavior, and
how drivers can understand the car's output values.

So we see that real-life objects have various properties, namely:
I Attributes, such as color,length, width, height, weight, and mass
I Interfaces, such as steering wheels, pedals, and door handles
I Functions or actions, such as driving, braking, or sheltering dogs

By now we should have some idea of how we can realize the transition
from our real world to the virtual world of computers. Of course, the
object-oriented approach did not invent this transition, but it facili-

VisualAge for C++ for OS/2

Object Talk

tates it in a neat and transparent manner. Procedural programming
languages offer primitive data types, such as integers, floating-point
numbers, characters, and pointers. Additionally, they offer compound
data types, so-called structures or records, where several elements
with primitive or compound data types can be stored. Object-oriented
languages offer a particular data type that can store all properties of
an object and guarantee that the object's attributes are manipulated
only by its own functions or well-defined interfaces.

In the procedural approach, an object generally is divided into struc-
tures that contain its attributes and procedures that deliver its func-
tions and operate with its data. The disadvantage of using procedural
languages is that nothing (except rigid discipline) prevents program-
mers from directly manipulating the data of other objects. Although
such manipulation was not originally intended, programmers are
inclined to do so when there are time constraints. Therefore, the pro-
cedures and data structures of different objects often are heavily inter-
dependent, which makes reusability almost impossible and
complicates the process of extending the software system.

Objects in computer environments, once they are designed, are dis-
crete, have a limited number of attributes, and behave as defined (but
sometimes not as intended). Software objects represent real-life
objects but are implemented in a manner that is appropriate for a par-
ticular problem. Again, let us take a car as an example of an object.
For an application that supports car sellers, designers implement the
car object with attributes that are important for marketing purposes,
such as price, horsepower, color, and number of air bags. These
attributes are rather high level, because customers usually are not
interested in the amount of steel or aluminum that was used to pro-
duce the car. For an application that supports the car manufacturing
process, however, designers must assign more attributes to the car
object, because engineers are interested in details that are essential to
the building of a car. In both applications, the car object adopts only
some of its real-world attributes.

If we consult Webster's dictionary again, we find that a class is defined
as:

A set or group u)hose members share ct I,east one cttr{bute.

This definition also offers unlimited possibilities. Let us take, for
example, animals, as all members share the haveorganism attribute.
Biology teaches us that humans also share the haveorganism
attribute, so according to Webster's definition, humans belong to the

classes

Chapter 1. VisualAge for C++ and Application Development 7

Object Talk

same class. Sorry? Another example: car is a class, as all members
have the fourwheels attribute. Rollerskates also share the fourwheels
attribute, so they belong to the same class. Sorry again?

These examples show how difficult it sometimes is to find the correct
level of abstraction. Here, of course, it is quite obvious that we chose
the wrong level. Animals and humans do belong to the same class, but
to a more generalized class, say, livingBeings. Rollerskates and cars
can belong to the more generalized class, fourwheeled. We notice that
we can describe classes in more abstract terms than we can describe
objects.

We chose our first example of a class from science, not accidentally, as
biologists actually group the world of living beings into classes, such
as mammals, cold-blooded animals, and microbes. Chemists group
substances into classes, for example, organic and inorganic sub-
stances, and physicists deal with solid, liquid, and gaseous sub-
stances. We see that in every domain scientists use classes to
structure our complex world into comprehensive groups. Depending
on the current focus of our interest, the classification may be very
detailed.

Classes in computer environments are invented to structure a soft-
ware problem and thus should be regarded as groups whose members
share several (not just one) attributes or provide similar function. In
our examples of both objects and classes, we look at cars. The Car
class contains the set of all cars. Every car provides the same function
and has similar attributes and interfaces. This fact is quite obvious
because experienced drivers can operate every car entrusted to them,
even if they have never seen a certain model before. The Car class
describes the general functions that all cars have in common. A car
object is a distinct instance of the Car class, such as your car or the car
parked in your preferred space.

In real life we know the term "inheritance" very well, as we all dream
of coming into a small fortune through inheritance. Its meaning in the
object-oriented paradigm is completely different, however.

Strictly speaking, inheritance in the object-oriented world relates
more to its biological meaning, because one class does not bequeath its
properties to another class and pass away; the new class originally
looks and behaves like its parent class, and the two classes coexist.
The class designer specializes the new class by adding or changing the
original attributes or functions, so that the class can fulfill its
intended purpose. You can compare this work to that of a car design
engineer who wants to create a new model. He or she probably does

Inheritance

8 VisualAge for C++ for OS/2

Object Talk

not begin from scratch but takes an existing car as a prototype, modi-
fies it here and there, perhaps removing the roof to come up with a
convertible version.

Note that the design engineer designs the new model by using draw-
ings, or better, with the help of a computer-aided design (CAD) pro-
gram. Consider also that the removal of the roof incurs many
subsequent changes. We can assume that a car without a roof requires
a different chassis, different front doors, and other parts that will dif-
ferentiate it from a car with a roof. So, we do not recommend applying
inheritance when the derived class undergoes this kind of change,
because the main benefit of inheritance (and here we come back to
computer science) should be reuse of existing classes.

Look at Figure 1. The Convertible class is a specialization of the Car
class, and the Car class is a generalization of the Convertible class. A
generalization of the Car class would be Vehicle. Inheritance means
that the specialized class adopts all properties of its ancestor class;
that is, the specialized class behaves exactly like the ancestor class
and owns the same attributes. In fact, if you derive from an existing
class, you work on its copy. But, you can add new attributes and func-
tions to the derived (specialized) class or change existing functions.
For example, the opensunRoof function is no longer valid for the Con-
vertible class, whereas the rollbar attribute is not present in the Car
class.

Convertible

Figure 1. Inheritance

Chapter 1. VisualAge for C++ and Application Development

Object Talk

The ability of the descendants of a class to inherit all functions of their
ancestor provides the means of reusing code. Modification of common
behavior need be implemented only once, namely, inside the functions
of the ancestor class.

Encapsulation

The implementation details of a car's functions are hidden from driv-
ers, who must know only how to handle the interfaces.

Car drivers should treat their engines with care and shift the gears
appropriately. For beginners, the procedure of depressing the clutch,
shifting gears, letting out the clutch, and letting in the clutch again is
most challenging during the first few lessons at a driving school. In
cars equipped with automatic transmissions, drivers can shift gears
without having to use any additional pedals or shifts. The gear change
is encapsulated inside the acceleration process, so that drivers need
only operate the gas pedal. Drivers also know that as soon as they
apply the brakes, the car slows down, but they do not know (and do
not care) whether the brake pedal activates a disk brake or a drum
brake.

Object-oriented programming languages as well offer encapsulation.
Objects reveal only their interfaces, not their internal implementa-
tion. Callers of the functions do not care how the underlying algo-
rithms are implemented, but they rely on the promised behavior of the
function.

Polymorphism

The term podymorphjsm looks so strange that we consult Webster's
again and find it defined as:

Genetic variation that produces differing characteristics i,n indivi,duals
of the scLi'ne population or species .

Well, this definition in itself looks strange. So let us try to understand
the meaning of polymorphism by looking at its Greek root and con-
structing a noun phrase from the result: pozy means many or multiple,
morph means shape or form. So, we define polymorphism as:

A;btlity of a thing or organism to exist in multiple forms .

In the real world, we can find such examples as wax or amoebas.
When you visit wax museums you can see that wax really exists in
many different forms. And if you happen to have access to a micro-
scope and a culture of microorganisms, you can see that amoebas con-
stantly change shape as they move and engulf food.

10 VisualAge for C++ for OS/2

Object Talk

Polymorphism in an object-oriented sense differs slightly from wax
and amoebas. The characteristic of having different forms can also be
interpreted as providing flexible, that is, nondetermined, behavior. Let
us take a crisp example from real life: When you step on the tail of a
dog, it barks, whereas when you step on the tail of a cat, it meows.
With all apologies to the pet world, this is polymorphism in action!
The same action executed on different species (understand type of
object) provokes different reactions. Let us look at how polymorphism
applies in your everyday life as a programmer.

Generally, when you invoke a function, you expect a determined flow
of execution, because the function is designed and implemented to
carry out a particular task. In pure object-oriented languages, how-
ever, a function is always coupled to a class. At coding time, the exact
class that is coupled to the function when it executes need not (and
often cannot) be known. Then, during run time, when the function is
called, the class that actually executes the invoked function can be the
specified class or a descendant of that class.

Say, for example, that we want to call the draw function of the Figure
class, and we expect that the actual object should draw itself on the
screen. We do not care, however, whether during run time the actual
object will be an instance of the Circle or Square class, both of which
are descendants of the Figure class. Obviously, the draw function
behaves differently according to the actual class. In future releases of
the application, one or more new descendants of figure might exist, for
example, the 'Thiangle class, which also provides its draw function.
The good thing is that the caller of the draw function does not have to
know about the existence of the new class.

Developers cope with many classes and objects. Some classes and
objects directly represent the image of real-life objects; others are met-
aphors for services that are required to implement the business logic
or communicate with either the user of the application or external
devices. In large software applications, the associations and interac-
tions among all objects are both difficult to describe and complex, so
we must have methods to shed light on that complexity. Without such
methods, developers would soon see themselves as "object-disori-
ented''!

Object-Oriented Methods

Webster's defines the term 77?efhod as:

Ord,erly or systematic arrangement, seqii,ence, or the I,the.

In fact, we need a systematically arranged model to define, refine,
implement, maintain, and document complex software constructions.
It is important that all participants of a project know the terminology

Chapter 1. VisualAge for C++ and Application Development FI1

Object Talk

12

of the problem domain. Generally, when you begin a new software
project, you are given some ambiguous text or informal specifications.
Your customers cannot express precisely what they want, and, if you
do not know everything about their specific problem domain, you can-
not ask the correct questions to fill in the gaps. As soon as develop-
ment starts, the requirements for the product change, because some
gaps now become obvious, and you can hardly estimate how long you
will work on the implementation. In most cases, development goes on
indefinitely, because users always find something that is worth chang-
ing or adding. Object-oriented methods cannot prevent your customer
from having additional requirements, but it can decrease the effort
you expend to integrate the extensions into your design and imple-
mentation.

Several analysts, such as Rumbaugh, Jacobson, and Wirfs-Brock, have
published techniques for translating real-life problems into different
models that offer a view of the problem domain and facilitate system
implementation. Because object-orientation is a rather new subject,
some of the methods are likely to be refined in future publications.
One common thread among the methods that is not likely to change,
however, is the recommendation to develop applications iteratively.
The visual modeling technique (VMT), which we introduce next, has
adopted the object-oriented methods of Rumbaugh, Wirfs-Brock, and
Jacobson.

James Rumbaugh's object modeling technique (OMT) is popular
because of its simple notation. Basically, OMT consists of three mod-
els: the static model, which captures the relations among objects; the
dynamic model, which captures the run-time behavior of objects; and
the functional model, which sketches the flow of operations.

Rebecca Wirfs-Brock's responsibility-driven design (RDD) reflects the
responsibilities, that is, the tasks, that a class must accomplish. Ms.
Wirfs-Brock introduces collaborators, which are classes that help a
class fulfill its responsibility. She suggests creating one class-responsi-
bility-collaborator (CRC) card per class; each card indicates the class,
lists all of its responsibilities, and for each responsibility gives the
related collaborators.

In Ivar Jacobson's object-oriented software engineering (OOSE) tech-
nique, objects and classes are found with the help of use cases. A use
case is an external view describing an interaction between a user and
a system. The technique essentially draws a border around the prob-
lem domain and defines user roles.

Rumbaugh, Jacobson, and Wirfs-Brock state that there are static and
dynamic models. The static model, also known as object models,
focuses on the hierarchy and associations of objects. The dynamic
model emphasizes the interdependencies and run-time behavior of
objects.

VisualAge for C++ for OS/2

Visual Modeling Technique

Visual Modeling Technique

In Websfer's we find the term fech7?Zgzte defined as:

The systematic procedure by u)hich a complex or scientific tash is
accomplished.

Software development is actually a complex task. Although several
attempts have been made to approach the task scientifically, with the
goal of automating software development, the inherent complexity is
(still) a big obstacle. We need heuristic and iterative techniques to
master the problem.

If we look at the methodologies of Rumbaugh, Wirfs-Brock, and Jacob-
son, we notice that they thoroughly explain their respective system-
atic procedures, but none of them address the new programming
technique that has become important for modern application develop-
ment, namely, visual programming. The authors mention the impor-
tance of developing an analysis prototype that customers can use to
verify the correctness and completeness of the user interfaces, and
they demand the development of a design prototype that reflects the
current state of the design model and evolves toward the final imple-
mentation. But, they do not explain how to implement the prototypes.

VMT fills the prototype implementation gap and, by using the follow-
ing methods or techniques, serves as a roadmap for developing appli-
cations with Guls:
I OOSE: VMT uses the use case model to find potential objects and

classes in the problem domain that form the object model. The use
case model also serves as a starting point for the development of
dynamic models.

D OMT: VMT uses the static model (object model) and the dynamic
model (event-trace diagram and state-transition diagram) to illus-
trate the relationships among objects and the run-time behavior of
the objects.

D RDD: VMT uses the CRC card technique to identify an object's
responsibilities and collaborators.

VMT is a complementary approach to object-oriented application
development (Figure 2). It uses OMT notation to illustrate the static
and dynamic models, and it divides the development process into
three phases: analysis, design, and implementation.

Chapter 1. VisualAge for C++ and Application Development 13

Visual Modeling Technique

Iterate

Figure 2. VMT: A Complementary Approach to Object-Orientation

Furthermore, VMT proposes that you not draw strict boundaries
between the phases; rather, you should analyze a little, design a little,
implement a little, verify your results, and iterate. With VMT, you can
check whether the resulting models are complete and consistent and
thus provide a stable and verified system.

Analysis

14

The goal of analysis is to understand the problem domain, that is, to
clarify zuhcLf the system should provide. So, the first step is to separate
the problem domain from the real world. In most cases, you would
carry out this first step together with your users and define problem
statements that are based on the requirements specification. Then you
would arrange these problem statements to form use cases (Odjec£-
Oriented, Software Engineering. A Use Case Dri,Den Approach by I.
cJCLcobso7? ef CLZ.). At this stage, the use cases are rather high level. You
do not consider any implementation constraints, except that the sys-
tem should be affordable and implemented within a reasonable time
frame. You simply describe the essentials of the system's functions,
regarding the functions as black boxes. Consequently, you take only

VisualAge for C++ for OS/2

Visual Modeling Technique

those objects that directly represent their real-life counterparts; you
can find these objects by analyzing the use cases (the process of find-
ing objects is discussed in Chapter 3, "Analysts at Work," on page 61).

You develop an analysis prototype and show it to your users, so that
they can verify that the use cases are complete and correct. If the use
cases are not complete and correct, seize the opportunity: extend exist-
ing use cases or add new problem statements and formulate new use
cases that were not obvious at the very beginning. Then, refine the
prototype and go back to your users.

When you have finished developing the use cases and the correspond-
ing user interfaces, determine whether you can group some of the
objects in classes. Once you have found all classes, you can establish
their relationships (especially inheritance and aggregation),
attributes, and behaviors. The dynamic model describes how the
objects interact. As the objects of the analysis model are derived
directly from the problem statements and therefore represent real-life
objects, they are also called se777ci7t£Zc ody.ecfs.

We discuss the analysis phase in detail in Chapter 3, "Analysts at
Work," on page 61.

The main goal of the design phase is to devise a solution, that is,
answer the hozu question. As input you use the models that you devel-
oped during the analysis phase. VMT divides design into system
design and object design. In system design, you determine the hard-
ware and software components that are relevant for the application,
such as the operating system, programming language, development
tools, database system, and communication protocol. You also chart a
high-level structure for the application functions. In object design, you
refine the models from analysis, considering the constraints that the
hardware and software components impose on the system. You then
use these refined models for the design prototype.

We explain the design phase in detail in Chapter 4, "Designers at
Work," on page 83.

Design

Implementation

The goal of the implementation phase is to translate the design model
into the implementation model, that is, the actual application con-
struction. The design and implementation phases are closely coupled
as the design prototype gradually evolves toward the final implemen-
tation model.

Chapter 1. VisualAge for C++ and Application Development 15

Visual Programming with VisualAge for C++

We explain the implementation phase in detail in Part 3, "Building the
Visual Realty Application" on page 105.

Visual Programming with VisualAge for C++

VisualAge for C++ takes advantage of the visual programming con-
struction technology of IBM's VisuaIAge SmalltalkTM product. Visual-
Age for C++, a follow-on product of the former Cset++TM product,
includes the development tools from the Cset++ product. This power-
ful, object-oriented combination lets you build parts visually and then
combine the parts to construct sophisticated applications. The key
concept of VisualAge for C++ is that all existing or built parts are
designed for reusability.

Using VisualAge for C++, even inexperienced programmers can build
partial or complete applications because they do not have to write any
code, provided that all components already exist. These components
consist of graphical elements, the so-called visual parts, and the
classes that handle business logic and data access, the so-called non-
visual parts.

In truth, only in rare cases will you develop an application without
having to add a piece of code! If you must add some code manually,
however, VisualAge for C++ supports you in adhering to the object-ori-
ented paradigm, that is, building reusable parts. It provides a library
of prefabricated, ready-to-use components that you can use "as is" or
enhance. You decide whether you write the missing code yourself or
buy additional libraries with parts that meet your needs.

Once you start using VisualAge for C++, you gradually learn the con-
cepts of object-orientation. At first, you might take advantage of the
GUI creation capability only, while still calling your existing code.
Then, you take the plunge into visual programming, reusing your
GUI. Finally, having improved your skills in object-orientation and
C++, you explore the advanced features of the product that enable you
to create your own parts.

When you program visually with VisualAge for C++ you develop your
applications by using a graphical, not a textual, tool. The Visual
Builder tool provides a powerful framework for developing not only
simple Guls but a complete application. You choose the visual parts
that your application requires and, using the mouse, lay out the appli-
cation interface by dragging and dropping the parts on a free-form
surface. In this way, you and the end user of the application can look
at the GUI before you have included the business logic and invoked
the compiler.

16 VisualAge for C++ for OS/2

Visual Programming with VisualAge for C++

Before we show you how to build an entire application by using an
object-oriented approach,let us describe the complete set of visualAge
for C++ tools.

Chapter 1. VisualAge for C++ and Application Development 17

Visual Programming with VisualAge for C++

18 VisualAge for C++ for OS/2

g Started in
alAge for

G++ Environment
We recommend that you read this overview of the VisualAge for C++
environment if you want to learn the basic concepts and develop a
broad understanding of the VisualAge for C++ tools.

VisualAge for C++ provides you with all of the tools you need, from
developing a prototype with the Visual Builder to tuning application
performance with the Performance Analyzer. VisuaIAge for C++ lets
you manage your project, build your application with the Visual
Builder and Data Access Builder, edit the code, compile it, and finally
link it. The Debugger eases the task of fixing problems. The Browser

19

Managing Your Project

and Performance Analyzer, respectively, help you understand the
structure of your code and the behavior of your application at run
time. Of course, if you do not want to use Visual Builder to build your
application, you can still type in your source code and take advantage
of the powerful VisualAge for C++ compiler and linker.

Within VisualAge for C++, tools can interact through the Work-
Frame/2 services. An environment with this capability is called an
Z7}£egrc}£ecz dezjezap77?e7if e7?I;Zro7t77?e7t£ (IDE). Unlike most IDEs, Work-
Frame/2 seamlessly integrates OS/2, WindowsTM, and DOS programs,
enabling them to cooperate without actually knowing each other.

Managing Your Project

Good programming discipline suggest that you do not start coding as
soon as you have a rough idea of what your application should do.
Rather, you should plan your development and organize files on your
system. WorkFrame/2 is a highly customizable application develop-
ment environment that can help you with these planning and organi-
zation tasks.

WorkFrame/2 Concepts
What's New and Nifty?

• Full integration with the OS/2 Workplace
ShellTM . Project hierarchies instead of sepa-
rate concepts for base and composite projects .
Common container for project files and project
monitor window . New Build and MakeMake
facilities . Fast and easy generation of skeletal
applications with Project Smarts . Ability to
customize projects with OS/2, DOS, or Win-
dows tools

When building an application, you deal with many different pieces of
data, such as C++ source files, resource files, and help files-the
project elements. All project elements that make up an application or
a subsystem are grouped inside a pro].ect, which is the core of the
WorkFrame/2 environment. Each project has a single target, for exam-
ple, an executable file or a library.

Each project element has a type. WorkFrame/2 uses this type to
choose which action to apply to a project part. For example, if you
define a C++ SourceFile type as all files matching the * . cpp file mask
and a SystemEditor action that takes the C++SourceFile type as input

20 VisualAge for C++ for OS/2

Managing Your Project

and corresponds to the enhanced editor for OS/2 Presentation Man-
agerTM (EPM OS/2), all project elements with the .cpp extension can
be edited through the EPM editor.

An action can correspond to any file that can be run, such as an exe-
cutable file or a command file written in the REXX language. For each
action, an entry point is associated into a specific support dynamic
link library (DLL). This DLL defines the action default options and
provides the GUI to easily alter them. For example, all VisualAge for
C++ compiler options can be accessed through the interface shown in
Figure 3.

Figure 3. Interface to Alter Options for the VisuaIAge for C++ Compiler

Actions must belong to a class, such as Edit or Compile. Classes allow
you to use the same action name for different types. For example,
when you apply the Edit action class to either a bitmap or a C++
SourceFile, you obviously call different actions that start different
tools, but this is hidden from the user through the WorkFrame/2 inter-
face. Figure 4 shows the list of actions defined in the default Visual-
Age for C++ project for the Edit class.

Chapter 2. Getting Started in a VisualAge for C++ Environment 21

Managing Your Project

Figure 4. Actions for the Edit Class

An action can be file or project scoped. File-scoped actions can be
invoked only from the project elements defined as their source types.
For example, the IconEditor action is available only from icon files.
Project-scoped actions apply to the project entity and can generally be
invoked from any tool that has been started within the project. A typi-
cal example of a project-scoped action is the Make action

Types can be grouped into more general entities: for example, edzfcEbze
could be a way of grouping the C++ SourceFile and C++ IncludeFile
types. If you now define an action that takes eczjfcbbze as input, that
action applies to all files that match all types grouped in the eczzfcLbze
type. Editable is called a ZogzccLZ OR type.

Warning!

Actions that define both source and target types are eligi-
ble to the MakeMake utility when generating a make file
for your application. The choice of source and target types
deeply influences the behavior of the MakeMake tool. If the
choice is incorrect, the generated make file will be unus-
able.

Actions and types are con figured for each project through the tools
setup feature. A project's tools setup can be inherited by several
projects and then modified locally.

22 VisualAge for C++ for OS/2

Managing Your Project

Creating a Project with WorkFrame/2

-a:fii:i:

To take full advantage of the integration facilities of WorkFrame/2,
you must create a project for your application or subsystem, either
from a predefined template or by using the Project Smarts facility.

using Templates

The Workframe/2 Version 3 project template is created in your system
at installation time. With the template, you can create a new, "empty"
project; that is, you must con figure some types and actions in the tools
setup before you actually start using the project.

To help you begin, VisualAge for C++ is shipped with a default Visual-
Age for C++ project template, fully con figured with the VisuaIAge for
C++ tools and the most common types. Even if you reuse this tem-
plate, you can still add your own actions and types to reflect your
needs and preferences. Any OS/2, DOS, or Windows application can be
added as an action to the project's tools setup.

using Project Smarts

Project Smarts is a new facility that offers a catalog of skeletal appli-
cations to use as a quick start for your project. With Project Smarts,
you can create a project con figured according to an application cate-
gory, such as:
I Visual Builder application
I Presentation Manager application
I Resource Dynamic Link library
D C++ Dynamic Link library
D Data Access Builder application

cry application created from Project Smarts inherits from the Visual-
Age for C++ default project.

Choosing a certain catalog entry starts a REXX installation script.
The script lets you specify the project settings, such as its working
directory and name, and then creates a project con figured with the
tools setup appropriate to the application. Each skeletal application
consists of some project parts that you can use as a basis for your own
application development. Figure 5 shows the description of the Pre-
sentation Manager skeletal application.

Chapter 2. Getting Started in a VisualAge for C++ Environment 23

Managing Your Project

Use Project Smarts to create a proj.ect to suit Hour needs. Select
one of the f ollowing customizable projects and click on "Create".

Available projects:

IPF Document
RE± H a H E =E:U +H3

Plesource Dunamic Link Lihrarg
UI Class Librarg Application
Visual Builder Application
Workplace Shell Application

Description of the selected project:

A basic Presentation Manager (PM) application that creates a
window with a menu bar containing the common menu items,
File, Edit, and Help. The application is f ullg help-enabled, with
context-sensitive help and tutorial templates. Commands are
processed in a standard window procedure that provides File
open and Save as dialogs. You can use this application as a
template f or writing gour own PM application.

The name of the

Figure 5. Project Smarts Catalog View: Presentation Manager Application

You can add your own skeletal applications to the Project Smarts cata-
log. Project Smarts provides REXX utilities to use for writing the
installation script of your application. For example, you can create file
templates according to your own corporate standards and define them
as basic project parts for a standard project. Building file templates is
discussed in more detail in Chapter 5, "Setting Up the Development
Environment," on page 107. You can also create your own catalog of
applications, as Projects Smarts is not an executable file but an OS/2
Workplace Shell object template.

24 VisualAge for C++ for OS/2

Managing Your Project

Inheritance or Templates?

What is the difference between creating a
project:

I by inheritance? You cannot modify
existing actions, types, or variables in
the base project, but you can add your
own. Any change to the base project,
however, is automatically reflected in
all child projects.

I by copy (or using templates)? You can
modify any actions, types, and vari-
ables. You must use this solution if, for
example, you want to add a new type
and use it as input for an existing
action. This solution provides more
flexibility for updating the tools setup,
but it implies that you update projects
one by one if any feature must be
changed.

In both cases, you can modify the project
settings, such as the target name or the
project location. You also have to specify
action options, such as compilation flags or
the libraries required for linking.

Creating Composite Projects

Most applications, unless they are truly simple, consist of a hierarchy
of projects. The way in which you organize your projects reflects their
dependencies. Defining a project as composite is equivalent to creating
other projects as project parts of that pro].ect. 'lypically, an application
can be divided into several subsystems. For each subsystem there is a
corresponding library, which you must build before building the appli-
cation itself. You could manage such an application, as depicted in
Figure 6, where the main project depends on its nested projects; that
is, it cannot be built if the subproject targets have not been completed.

Chapter 2. Getting Started in a VisualAge for C++ Environment 25

Managing Your Project

Figure 6. Example of composite project

WorkFrame/2 handles composite projects in such a way that the Build
and MakeMake facilities recursively build the project hierarchy.

The MakeMake and Build Facilities

-a--S?¥ Used together, the MakeMake and Build facilities let you build your
application without having to create and maintain make files. The
MakeMake facility creates a make file for a project by examining the
tools setup actions and types and determining the correct sequence of
commands to build the pro].ect target.

The Build facility uses the MakeMake facility to build the make file
for your application and to start a make utility such as nmake against
the generated make file. The Build facility understands project organi-
zation and thus builds subprojects first in a project hierarchy

Customizing a Project with Build Smarts

-I::_--ii¥:

26

With the Build Smarts facility, you can temporarily modify the
requested compiling flags and linking options for the most common
build options, such as debug, browse, or optimize. Build Smarts over-
rides the current options for the compile and link actions as defined in
the project's tools setup.

When you are working with composite projects, Build Smarts lets you
specify whether you want to build subprojects first. This specification
prevents the Build facility from trying to recursively build all pro].ects
in the project hierarchy. You can also specify preprocessor macro val-
ues to be added or removed at the development or production stages.

VisualAge for C++ for OS/2

Generating Your Code

Migrating Existing Projects

If you are a C Set ++ customer, you must migrate your existing Work-
Frame/2 projects to WorkFrame/2 Version 3. The migration utility
scans the drives on your system to search for WorkFrame/2 Version 1
and Version 2 projects and provides you with a list of those pro].ects.
You can choose among several options:

I Migrate the Project only
I Migrate Projects and Actions profiles
I Migrate Actions Parameters

We suggest that you refer to the C/C++ User's Gztzde for more infor-
mation about project migration.

Generating Your Code
In this section we introduce Visual Builder, a tool for visual program-
ming; the IBM Open Class Library, which provides building blocks for
your application; and the Data Access Builder, which maps relational
database tables to C++ classes.

Using Visual Builder

'Thaditional GUI builders let you create the interface of your applica-
tion and generate the code for that interface. They do not provide a
visual way of generating the behavior of your application, such as the
piece of code executed when you click on a push button.

Visual Builder is not a traditional GUI builder. It lets you create a
complete application visually by reusing parts, connecting them, and
generating the code for the entire application. The generated code
uses the IBM Open Class Library and therefore is portable across the
platforms where the library is available. See "Building from Blocks"
on page 37 for more information about the IBM Open Class Library.

Visual Builder Concepts

Just as you would use building blocks to build a wall, Visual Builder
uses parts to build applications. You can think about parts as reusable
components that you can tailor to fit your needs, just as you would cut
a building block to fill a gap in your wall.

Any application made from parts is a part itself: Assembling primitive
parts results in a composite part. A primitive part can be a window or
an entry field-it is also called "control" to refer to the PM controls; a

Chapter 2. Getting Started in a VisualAge for C++ Environment 27

Generating Your Code

composite part can be a complete panel for a database information
update (Figure 7). The composite part can be reused as a building
block in another application.

T,
PPIMITIVE

Push Button
Construction

from Parts

COMPOSITE

Figure 7. Primitive and Composite Parts

Parts are either visual or nonvisual; an entry field and a frame win-
dow are examples of visual parts; a list of customers is an example of a
nonvisual part.

Pclrts JJ®£erfclce. Parts communicate through their interface. A part
interface consists of three features: cb££rjbztfes, c!cfjo7ts, and eue7?£s.
These features correspond to a natural way of viewing parts in terms
of the properties they have (attributes), the services they can provide
(actions), and the notifications they can send (events). Figure 8 shows
a sample part interface for a nonvisual part called SmartHouse.

Technical lnformation!

ca

28

A part is a C++ class. However, it has proper-
ties that a conventional C++ class does not
have, such as notification enabling. If you map
a class to a part, the data members of a class
correspond to the attributes of a part and the
methods of a class correspond to the actions of
a part. An event is a particular feature of a
part that triggers a notification.

The SmartHouse nonvisual part manages an "intelligent" house that
can detect when someone enters the house and monitor a smoke detec-
tion system. SmartHouse has been designed to send events if it

VisualAge for C++ for OS/2

Generating Your Code

detects anything unusual (dooropened and smokeDetected events)
and start actions, such as activating the alarm or automatically
switching on the lights.

Figure 8. Sample Part Interface: SmartHouse

Co7®7®ecf£J®g pal.£s. Connections define how parts interact through
their interface. A connection is a one-to-one visual relationship
between two parts (visual or nonvisual). Connections are categorized
as:

Attributeltolattribute
Whenever the value of the first attribute is changed,
the value of the second attribute is updated, so the
attribute values are always the same.

Event-to-attribute
Whenever an event occurs, the attribute is updated.

Event-to-action
Whenever an event occurs, the action is performed. A
variation of this, the attribute-event-to-action connec-
tion, starts an action when a certain attribute event
(for example, attribute changes value) occurs.

Chapter 2. Getting Started in a VisualAge for C++ Environment 29

Generating Your Code

Event-to-custom logic
An event-to-custom logic connection lets you call some
user code when the event occurs. The customized code
is encapsulated in a codesnippet() function. A varia-
tion of this connection is the attribute-to-custom logic
connection.

Eventlto-member
Whenever an event occurs, a member function of the
currently edited part is called. This connection lets you
call any member function, even if it has not been
added to the part interface. A variation of this connec-
tion is the attribute-to-member connection.

In Visual Builder, the origin of a connection is called the soz/roe part
and the destination of the connection is called the fcbrgef part.

Figure 9 shows several connections for the SmartHouse nonvisual
part. In this example, we create a simple GUI to monitor the state of a
SmartHouse. We first build an entry field (Owner Name) to reflect the
value of the ownerName attlfibute from the SmartHousecontrol part.
Then we use two radio buttons to reflect the alarm status: The alarm
is either on or off. Whenever the door is opened, the Smart House self-
activates the alarm. To monitor the lights in the different rooms of the
house, we use the Light Control button, and we can specify in which
room (represented here by a number) the lights must be turned on

Tri:::'|I[i=|=|[=|iEE=|]i|][]imEz:=Imitir[5riilll

`'`.```n``.

Owner Name Batman :•..............-......-................................`ii`;??...`.,...:.................

tgiv- E ` ````````-``````,`;,,.ALarmStatus.,,,,,,,-,,,,,,,,,,.,..,,,,,.,,,,,,,,,,,,,,,.,,,,,,,,,,,,--,,,,,,,,,,.,,,,,`,,,,,,,,,,.,,,,

: i:¥Alarm oN ££iAlarm OFF;
no````-..- ..---~-`,-,-,`

•.. ::.:.::::`:::I.:.T`,

H-`-`-``,.,--`-`--

Figure 9. Sample Connections: SmartHouse Monitoring System

30 VisualAge for C++ for OS/2

Generating Your Code

Table 1 explains in more detail connections we have to create for the
SmartHouse monitoring system in Figure 9.

Table 1. SmartHouse connections

Key Source Target Description

E] dooropenedEvent enable This event-to-action connec-
tion enables the Alarm ON
radio button whenever the
dooropenedEvent event
occurs.

E dooropenedEvent activateAlarm This connection illustrates
that a part can be both the
source and target of a con-
nection. In this case, the
house self-activates the
house alarm if the door-
OpenedEvent event occurs.

E] ownerName text With this attribute-to-
attribute connection, you
ensure that the text
attribute (that is, the value
of the entry field) always
reflects the value of the
SmartHousecontrol's own-
erName data member.

E buttonclickEvent switchLightson Because the switch-
Lightson action requires a
room number parameter,
this event-to-action connec-
tion is not complete without
connection E].

E value roomNumber This connection passes the
value of the numeric spin

Pou:ioe:t::naEarameterto

Visual Builder Editors

Visual Builder provides three editors that you can use to build your
parts.

Tfee Co7mpos£££on EcZ££or. With the Composition Editor (Figure 10),
you can design the graphical interface of your application, add the
nonvisual parts you need for the logic of your application, and make
the appropriate connections.

Chapter 2. Getting Started in a VisualAge for C++ Environment 31

Generating Your Code

Visual Builder comes with a set of nonvisual and visual parts classi-
fied by categories in the parts palette E]. The base parts are mainly
mapped from the User Interface Class Library and the Collection
Class Library. The palette can be extended by adding your own catego-
ries and primitive or composite parts.

The toolbar E] provides direct access to a set of tools that you can use to
arrange the parts layout on the free-form surface E].

To create a new application, just pick up the visual and nonvisual
parts you need from the parts palette and drop them onto the free-
form surface. Then make the appropriate connections and generate
the code.

Figure 10. Visual Builder: Composition Editor

Visual Builder can generate the following code:
I Part source, that is, the code for creating the parts and the logic

derived from the connections
I Main source file, that is, a file containing a main() entry point, if

you want to test your part
I Make file for building the application (if you are not using Work-

Frame/2 and the MakeMake facility)
I Application resource file (for national language support (NLS)

Tfae Pclr£ JJaferfclce EcZ££or. You can use the Part Interface Editor to
create or modify the interface of your parts. With the Part Interface
Editor, you can create the attributes, actions, and events related to
your part, promote features, and select your preferred features.

32 VisualAge for C++ for OS/2

Generating Your Code

Creating attributes
You create an attribute by entering its name and type.
The Part Interface Editor automatically generates the
declarations for the attribute accessors (set and get
member functions) you need as well as the identifica-
tion of the event corresponding to the attribute. Visual
Builder uses this event to signal any changes to the
attribute value. You enter a short description for the
attribute. Figure 11 shows an example of using the
part interface to create a Boolean attribute.

Figure 11. Part Interface Editor: Attribute Creation

Creating actions
The Part Interface Editor generates a default member
function declaration from the action name provided.
The tool automatically reflects any changes to the
returned type or any addition of parameters to the
function call.

Chapter 2. Getting Started in a VisualAge for C++ Environment 33

Generating Your Code

Creating events
The Part Interface Editor generates a unique event
identification from the event name you provide. Visual
Builder uses the identification to notify other parts
when this event occurs.

An event can have parameters that indicate the name
and type of some data corresponding to that event. For
example, if your part must read a queue element when
receiving an event, the event parameters contain the
element address and its type, such as Istring, so that
you can directly access the data with any subsequent
query.

Promoting features
With the promote feature facility, you can provide
access to part features when the part is embedded as a
subpart within another part. Say you define a default-
Buttonspanel composite part from a simple canvas to
which you add three push buttons (OK, Cc!7tcez, HeJp)
as shown in Figure 12. If you then reuse the default-
Buttonspanel part in another application, only the
attributes, events, and actions of the defaultButtons-
Panel base part, that is, the canvas, are available.
Because you no longer have access to the default-
Buttonspanel subparts, such as the three push but-
tons, you cannot directly create a connection that
would start a specific action when clicking on the OK
push button. You must pro777ofe any feature that you
want to access from another part that reuses the part.

HH I I H lp
.:+++:.-.::

Figure 12. defaultButtonspanel Composite Part

The Part Interface Editor lets you select a subpart
name (such as OKPushButton), the feature type (for
example, event) and name (for example, buttonclick-
Event). Visual Builder generates a name for the pro-
moted feature (OKPushButtonButtonclickEvent).
This name is now added to the list of features for the
defaultButtonspanel composite part.

34 VisualAge for C++ for OS/2

Generating Your Code

Selecting preferred features
You can select preferred features to customize the list
of features in the connection menu for each part. The
list typically contains the features that you use most
often.

Tfoe Czclss EcZ££or. With the Class Editor (Figure 13), you can custom-
ize code generation parameters. For example, you can change the
source and include file names where the generated code is saved E] or
modify the default constructor and destructor code E]. You can also
attach a specific icon E] to the part. The icon is displayed when you
reuse the part in the Composition Editor.

By default, all graphical resources, such as the label of a push button,
are hardcoded in the generated code. If you want those resources to be
generated in a separate resource file, you must specify such from the
Class Editor, E, by selecting the Sfcir£Z7}g resoz/rce jcz check box and
providing the entry field with a resource identifier. This feature lets
you create applications that are enabled for NLS.

EE fiETREEflB
cai

a 8 I flEERE£`an*&REHg I.--Z HHEEEEEH E
;RE ii

,8
•

The new Intelligent H Monltor
+ /

8!Bfi# *1le 8"8£l£)ff&£!faH SmrtHu hpp SMARTHOUSE I

D \SAMPLES\SMAFtTH 88
Base Sla§8- assersgB§ I ',,,SmrtHu •CPP

!if i,:,`g,i(>}¥irt(i(,t-, i,ii!,tic
#,,,

REffies¥###ar¥rs#

U;SmartHouse(unslgned lo

`,,

ng id, lwlndow# pa SI!se

t##rs# eemmsasHHffrsB# &BasB
i..'...`...`..-`.i-`,-`,-`.,, ''mBcod \pv"3

rssrsi± xffise i 1g ` , ,`*
`

E[§£# asRS*ffasE#asr{`Bcaeeg I.muco .i
V

#gg# I 8
.BIB #i*xf t}a}ffig `,, 111

RE§ffi# E#gr Site
[`

RE8!& ffi##rsB ira I

F±BqL±irz:i:I:1l i##tLt|:liz:± fit!:::<s-~ -- -r -- - .---

I.Istrgenhpp'' lsTRGEN i

8F¥ e iabt

a '1 S

-+

1 1 1 111

J[• jJ!!RE
.ee¥i,+.

Figure 13. Visual Builder: Class Editor

Chapter 2. Getting Started in a VisualAge for C++ Environment 35

Generating Your Code

Whenever you create or modify the interface of a part, such as adding
an action or attribute definition, the code is generated in user-defined
files (with extensions .hpv, .cpv, and .rcv). This code is referred to as
the pcbrf fec!£z/res soz/rce cocze. Unlike other files that Visual Builder
generates, user-defined files are not overwritten whenever you gener-
ate the part features source code. Rather, the new code is appe77ded to
the files. Thus, you can modify the generated code without fearing
that those changes will be lost at next code generation.

Accessing D82 Tables with Data Access Builder

-a---_;ii----__:-_-:

36

With Data Access Builder, you can graphically map your existing rela-
tional database tables to an object interface. In a simple case, a rela-
tional database table maps to a class, and a column of the table maps
to an attribute of that class. Once you have defined your mapping,
Data Access Builder generates nonvisual parts to be used in Visual
Builder. Moreover, you can take full advantage of the IBM System
Object Model (SOM) technology by generating the code in the SOM
interface definition language (IDL). (For an introduction to SOM tech-
nology refer to "Direct-to-SOM Support" on page 43.)

Let us take a simple example: We create a car table with four
attributes, color, license, make, and model, as depicted in Figure 14. If
we map this table to a class and generate the code, Data Access
Builder creates two classes:

DCar
An instance of the Car class maps to a single row of the car table.
The Car class provides the member functions for adding, updat-
ing, retrieving, and deleting a row of the car table.

I CarManager
The CarManager class provides the services for manipulating a
set of car instances. You can use a Car Manager instance to select
some rows of your table through an SQL query (select method) or
display the complete set of rows (refresh method).

The generated code uses static SQL for efficient data access. Data
Access Builder also comes with a library of classes and parts for data-
base management (connect and disconnect) and transaction manage-
ment (commit and rollback).

VisualAge for C++ for OS/2

Generating Your Code

Figure 14. Database Access: From Mapping to Parts Generation

Building from BIocks
What's New and Nifty?

±E-t_::-_i _

The IBM Open Class Library features:
• Direct manipulation classes (drag-and-drop)
• Multimedia support ® 2-D graphics support .
Toolbar support . Dynamic data exchange
(DDE) support . Clipboard manipulation sup-
port . Fly-over help support

Without doubt, one of the greatest advantages of object-oriented pro-
gramming is class reusability. The IBM Open Class Library provides a
compr.ehensive range of reusable classes from which you can create
and manipulate objects. It is supported across many IBM and non-
IBM platforms to provide maximum portability of your C++ programs.
Most of the Visua]Age for C++ tools have been developed by use of the
IBM Open Class Library.

The IBM Open Class Library provides you with more than 500 classes,
grouped in the following libraries:
I User Interface Class Library
I Collection Class Library
I Data Access Builder Class Library

Chapter 2. Getting Started in a VisualAge for C++ Environment 37

Generating Your Code

I Application Support Class Library
I Standard Class Libraries

user Interface class Library

The user interface class library facilitates the development ofpo7-£c!bze
applications that have a GUI. It is built as a layer on top of the native
window presentation system (OS/2 Presentation Manager (PM)) and
encapsulates its concepts in C++ classes (Figure 15).

With a common interface across platforms, you can recompile your
code without worrying about the low-level changes of the native oper-
ating system. However, some PM features might not be available in
another graphical environment such as Motif®, so you must follow
some rules to guarantee that your code is fully portable. The documen-
tation precisely identifies portability issues for each class across the
available platforms.

Figure 15. User Interface Class Library Architecture

The User Interface Class Library includes the following elements:
I Base windows, menus, handlers, events, and help files (display

help, define contextual help, and fly-over help)
I Base controls, such as entry fields, static texts, buttons, and boxes

38 VisualAge for C++ for OS/2

Generating Your Code

I Advanced controls, such as containers, canvases, sliders, note-
books, toolbars, and font and file dialogs

I Application control classes to manipulate threads, timers,
resources, profiles, and the OS/2 clipboard

I Dynamic data exchange (DDE) classes for communication between
applications on the same machine

I Direct manipulation classes (drag-and-drop support)
I 2-D graphics classes for drawing primitives (lines and arcs) as well

as support for reading and displaying various graphical formats
(available only in OS/2)

I Multimedia classes for control of multimedia devices (available
only in OS/2)

Collection class Library

The Collection Class Library includes a complete set of abstract data
types to manipulate such objects as:
I Bags and sets: unordered collections of elements
I Sequences: ordered collection of elements
I Queues and dequeues (double queues)
D Heaps
D Stacks
I Tlees

Bags and sets can inherit from various properties such as indexing
and sort. As a result, you can use sorted bags or key sets. You can alter
queue properties to assign an access priority to added elements.

Data Access Builder class Library

The Data Access Builder Class Library provides classes that you can
use to manage the connection to a database (authentication, connect,
disconnect) as well as transactions (commit, rollback) on the database.
It also contains the abstract classes that Data Access Builder uses to
generate the C++ classes issued from the mapping of D82/2® tables
(refer to "Accessing D82 Tables with Data Access Builder" on page 36).

Application Support class Library

The Application Support Class Library provides the classes used most
often while developing C++ applications:

I String manipulation classes: provide member functions to edit,
compare, convert, format, and test strings

Chapter 2. Getting Started in a VisualAge for C++ Environment 39

Building Your Application

I Date and time classes: provide member functions to test and com-
pare dates or times, convert date and time formats

I Exception classes: provide the framework for throwing exceptions
within the class libraries

I 'Thace classes: provide trace facilities to help debugging code

Standard class Libraries

The Standard Class Libraries consist of the standard I/0 stream
library for C++ input and output handling and the complex mathe-
matics library for manipulating complex numbers.

The UNIX System Laboratories introduced the standard class librar-
ies in the C++ Language System Version 3.0. Since then, the libraries
have become a de facto standard and are shipped with all C++ compil-
ers. The set of standard class libraries usually includes the task
library. However, as the OS/2 operating system natively supports
multitasking, the task library is not provided on the OS/2 platform.

Building Your Application

In this section, we introduce you to the VisuaIAge for C++ editor and
present the main features of the compiler and linker.

Editing Your Code

-_a-,`?TI_i

40

The VisualAge editor, also known as the live parsing extensible
(LPEX) editor, is a language-sensitive editor. It reacts to the type of
the edited file and uses live parsers for keyword highlighting and code
formatting, such as automatic indenting. The LPEX editor dynami-
cally detects errors in your file and does "stupid error checking''; for
example, it finds missing closing brackets and detects nested com-
ments. Figure 16 shows an example of C++ source code formatting and
dynamic error detection. The LPEX editor is shipped with live parsers
for C, C++, FORTRAN, Pascal, COBOL, REXX, and BASIC.

VisualAge for C++ for OS/2

Building Your Application

smartHousE{
unsigned long id = UND_snartHouse,
Iuindow* parent = Iuindow: :dEsktopuindow{) ,
Iuindow* owner = 0,
const IRectanglE& rect = defaultFramingspec{) ,
const IFrameuindow: :Stule& stule = IFrameuindow: :defaultstule { },
const chart titlE = defaul.tTitte{});

OS/2 Live Parsing Editor

Figure 16. LPEX: Source Formatting and Dynamic Error Detection

The LPEX editor provides selective views of your code, such as a class
definition list, function list, and error list. You can also choose to show
only the lines containing a given string. The LPEX editor features all
of the functions you would expect from any editor, such as block
manipulation, a search facility, a toolbar for fast access to common
commands, and multiple views of the same file.

The LPEX editor is fully customizable. With it you can easily change
key assignments, parameters, menus, the toolbar, fonts, and colors
and write your own parser or modify existing parsers. You can extend
the capabilities of the LPEX editor if you have some REXX and C pro-
gramming knowledge.

What's New and Nifty?

±=-`+fT

Compiling

• Direct generation of SOM classes from C++
source code through Direct-to-SOM support .
Improved memory management component .
Facilities to trace heap of memory usage
(together with the Debugger) ® Locales support
• Generation of reduced debugging informa-
tion (line numbers only)

The VisualAge for C++ compiler generates highly optimized code for
any Intel® architecture from the i386TM to the PentiumTM and con-
forms to the major industry standards (ANSI C, ANSI C++ Draft
X3J16) to allow you to write portable C and C++ code. It supports the
key features of the C++ programming language, including templates
and exception handling.

Chapter 2. Getting Started in a VisualAge for C++ Environment 41

Building Your Application

-=itsi--:-_--_-:_____::--_--_:

42

Precompiled Headers

With precompiled headers, the compiler does not have to recompile
header files each time you change a source file that uses the header
files. Precompiled headers improve compile time. The VisualAge for
C++ compiler groups precompiled headers in a single file.

Memory Management

The entire memory component has been redesigned. New features and
functions are now available:
I Overhead reduction of allocated objects
I Extensive checks on entire heap with descriptive error messages
I Optimal page tuning
I Additional migration routines: _heapchk, _heapset, _heap_walk
I Support for user heap and shared memory
I 'Thansparent user heap allocations using malloc
I Support for debug tiled memory

The ITm+ compiler option lets you generate additional code for all
functions, so that you can debug memory management functions such
as new, calloc, or malloc. Used together with the Debugger, this option
enables automatic heap checking each time your program stops on a
breakpoint.

Support for Locales

Locales help you define "internationalized" applications. They provide
a way of changing the behavior of your application according to lan-
guage and cultural differences, such as character sets and date for-
mats. The VisualAge for C++ compiler provides the facilities to create
and manipulate locales in your code. Such facilities include LOCAL-
DEF, to create a locale object, and ICONV, to convert a file from one
code set encoding to another. You can either reuse the locale objects
supplied with the VisualAge for C++ compiler or create your own.

Support of locales is based on the IEEE POSIX P1003.2 and X/Open
Portability Guide standards. For a detailed description of locales sup-
port, refer t,o the C / C++ Programming Guide .

Code Optimization

You can optimize your program by improving its execution speed or
decreasing its size. All optimizations that the VisualAge for C++ com-
piler performs are safe. The VisualAge for C++ compiler uses
advanced technologies for code optimization, such as:

VisualAge for C++ for OS/2

Building Your Application

:--_-_i_jig

Intermediate code linking
The intermediate code linker combines the intermedi-
ate code from several compile units into one compile
unit. Thus, because the optimizer does not have to
optimize each compilation unit separately, it performs
more efficiently for function inlining and global opti-
mizations. The intermediate code linker might also
detect errors that would cause unexpected run-time
behavior or linker errors such as:

• Redefinition of variables or functions
• Inconsistent declarations or definitions of func-

tions
• Type mismatch between definitions or declarations

of the same variable
• Conflicting compiler options

Global optimizations
The Visua]Age for C++ compiler performs loop analy-
sis, dead code removal, and advanced switch analysis.

Interprocedural optimizations
The VisualAge for C++ compiler reorganizes your code
for function calls, uses registers for variables storage,
and performs instruction scheduling. The built-in
functions are optimized according to the processor
type.

See the C/C++ Progrcm77}Z77g Gz4Zde for more details on optimization
techniques.

Direct-to-SOM Support

Code reusability is one of the great promises of object-oriented pro-
gramming. The reality, however, is that if you deliver a library of C++
classes in an OS/2 environment, it will not work in an AIXTM environ-
ment unless you recompile and relink the library. Moreover, if you
make changes in the library, it is likely that the applications using
that library will have to be recompiled. Obviously, delivering the same
library in a different programming language such as Smalltalk is not
a straightforward operation.

SOM addresses these issues and provides an environment where
reuse is a reality. SOM clearly separates the interface of a class from
its implementation to provide language independence (see Figure 17).
With SOM, you can define classes in one programming language and

Chapter 2. Getting Started in a VisualAge for C++ Environment 43

Building Your Application

use them in another. You can also update a SOM library without hav-
ing to recompile the client code (provided that you do not delete any
library member).

SOM objects can be shared across processes through the Distributed
SOM (DSOM) framework. Processes can be in the same or different
systems. They also can run on different platforms. The interprocess
communication is totally hidden from the programmer.

Both SOM and DSOM conform to the Common Object Request Broker
Architecture (CORBA) specification of the Object Management Group
(OMG).

Previously, to create a SOM object, you had to go through the time-
consuming process of writing its interface in a neutral language (IDL),
generating C++ bindings with the SOM compiler, and compiling the
generated C++ source code.

With the Direct-to-SOM (DTS) technology, you can generate a SOM
class from a C++ class definition. The compiler also generates the cor-
responding IDL whenever you want to access that SOM class from
another language or use DSOM. Because you are writing C++ directly,
you can benefit from the C++ features such as templates, operators,
and static members.

Although SOM imposes some restrictions on the C++ syntax, you
should be able to convert most of your C++ programs with minimal
effort.

44 VisualAge for C++ for OS/2

Building Your Application

Class Definition

(IDL Interface)

i SOMLanguageNeutral
t Interface Definition Lang.

(CORBA IDL)
__ _ _ __ _ _ ___ _ _ __1

Nativecode (e.g. C++) ,

Figure 17. Language-Independent Implementation with SOM

What's New and Nifty?

;E-::f-ll

Linking

• Complete new linker (ILINK) . New func-
tions and major performance improvements
over LINK386 . Separate handling of C++
template resolution

ILINK replaces LINK386 in the VisuaIAge for C++ development envi-
ronment. ILINK has been designed to work closely with the compiler
and provides better performance and optimization techniques than
link386. Although ILINK has new options and syntax, you can invoke
it with the LINK386 syntax by using the /NOFREE option. ILINK can
produce either an executable file, a DLL, or a device driver
(DRV,VDD).

Chapter 2. Getting Started in a VisualAge for C++ Environment 45

Understanding Your Code

ILINK has the following improved optimization techniques, which you
might want to use when your program is tested and stable:

Unreachable functions removal
The unreachable functions removal technique, also
referred to as s777clr£ Zj77faz77g, lets you remove the
unreferenced functions in your code or in the libraries
with which you are linking. An unreferenced function
is any function that you do not call directly in your
program or that is not called by one of the functions
you call. This optimization technique can significantly
reduce the size of your program, and thereby improve
its performance.

Technical Information!

If you are linking with a
DLL, the unreachable func-
tions removal technique will
not remove the functions
that are exported from that
DLL.

Hxecutable packing
With ILINK, you can slightly reduce the size and
enhance the speed of your executable file by packing
the code or data segments that have similar
attributes. ILINK also provides a new option
(/EXEPACK) to compress your executable file accord-
ing to the target operating system (OS/2 2.11 or Warp).

At the development stage, you can use the debugging information
packing option to generate a smaller and therefore faster executable
file.

Unlike LINK386, which required the compiler to correctly resolve C++
templates, ILINK can be invoked independently to handle C++ tem-
plate resolution.

Understanding Your Code

VisualAge for C++ has features that help you understand your code.
The class browser graphically displays the structure and hierarchy of
your C++ classes. The Debugger helps you understand why your appli-
cation fails. You can use the Performance Analyzer together with the
Debugger for thread interaction analysis, deadlock detection, and per-
formance tuning.

46 VisualAge for C++ for OS/2

Understanding Your Code

Browsing Your C++ Hierarchy
What's New and Nifty?

i;+,`#:`REillH

• New user interface for enhanced usability .
Smaller database files for faster load . Fully
customizable interface, including fonts and
colors . Ability to browse C++ source code
without compiling it (QuickBrowse facility) .
Ability to browse projects, executable files, and
libraries . Support for SOM classes generated
through Direct-to-SOM

Inheritance and therefore reuse are two of the keys to object-oriented
programming, but they come with the cost of increased complexity.
Finding the right class among the thousands available is often a tricky
task.

Browsing helps you analyze and understand which class and its asso-
ciated member functions can provide the service for which you are
looking. With the VisualAge for C++ Browser, you can navigate
through the class hierarchy, obtain the interface available to you,
locate a function, edit the source files, and access the online help for
the IBM Open Class Library classes.

The Browser is particularly useful when you develop a large pro].ect
with a team of developers. Typically, developers reuse the classes
defined in another subsystem and have to know how they can use a
particular class and the services offered by that class. Developers also
might want to check the impact of changing the prototype of one of
their functions that other developers are using.

The Visua]Age for C++ Browser creates an internal representation of
your program in a so-called browser database. The database contains
full information about your program if you specified certain compile
and link options. However, for those cases when you cannot compile or
would like to browse your code before you compile, you can use the
QuickBrowse facility. With QuickBrowse, you can generate the mini-
mum amount of information the browser requires to analyze your
code. (Some information that would be known only at compile time is
not available, such as viewing call chains.) The QuickBrowse facility is
typically useful where the project design phase has ended; that is, the
definition files (header files) have been completed, but the project has
not been implemented.

Browser Windows

The Browser can display information either as lists or graphs. When
you start the Browser, the initial window displays a list of all classes
that are defined in your executable file or library, that is, all classes
that are defined in the header files you included in your program.

Chapter 2. Getting Started in a VisualAge for C++ Environment 47

Understanding Your Code

For each class displayed in the initial window, you can access:

I List of members with inheritance. This option displays an incre-
mental list of all members (that is, constructors, destructors, func-
tions, and variables) of the class, as shown in Figure 18. With this
list, you develop a good understanding of the complete class inter-
face and have access to all relevant information, such as the online
documentation or the header file where these members are imple-
mented. A special notation is used for members that have been
generated by the compiler.

<iviewconno List Members with Inheritance

E]gg!ffi§gB¥§EL+erceegtFs®

E] pi!E?tic

E`:{tiis?r€{t',rt)rsfr{8s!!`iit:{€t!`S

RE ~mainviewconmo(voic])
a i ,i,i!-tjoris

void initialize(IEntrgField#, benutzer#)
void setsource(void)
void setTarget{ void)

Ejiji.r-3i€?l.isfj
E] REREffiRE

lobserver& dispatchNotificationEvent(const lNotification
E iji i,,+?citp

i] !E}a±3eF'¥#r

se Mouse Button 2 on top of ang to access PopUp menus

Figure 18. Browser List Window: List Members with Inheritance

Class members are usually classified according to the class name,
but you can categorize the list by either access (public, protected,
private) or type (functions, variables).
For each member function, you can display either the list or graph
of caller and callee functions, as well as the list of exceptions that
can be thrown from that member function. With the callers and
callees graph, you can develop a better understanding of the exe-
cution flow of your program, as shown in Figure 19. You can also
use this information to measure the impact on the entire applica-
tion of modifying a function.
A graph window is divided in two parts: The left side of the win-
dow shows the graph itself, and the right side of the window dis-
plays the list of objects in the graph. The list of objects can be used
to retrieve an object in a graph. It generally displays more infor-
mation about the object than is displayed on the graph itself, such
as the complete definition of a function (Figure 19). The slider on
the left side of the graph (E) is used to zoom in on and zoom out
from the graph.

48 VisualAge for C++ for OS/2

Understanding Your Code

Figure 19. Browser Graph Window: Graph All Callers and Callees

I List of friends or friendships, that is, the answer to such questions
as Whom do I declare to be my friend? and Who declared me as
being its friend?

I List of implementing files, that is, a list of header files where the
class is declared. With this list you can find the correct header file
name to include in your code when you want to use the class.

I Graph of all base and/or derived classes.

From the initial window, you can also display the list of all files that
your executable file or library uses. For each file, you can access the
following information:
I List of defined objects. This option displays the list of classes,

functions, variables, and types that are defined in the correspond-
ing file.

I Graph of all includers and includees (Figure 20.). This option is
useful for measuring the impact of modifying a header file in your
files hierarchy.

Chapter 2. Getting Started in a VisualAge for C++ Environment 49

Understanding Your Code

Figure 20. Browser Graph Window: Graph All Includers

If you are dealing with a large library, use the search facility for fast
access to information. It lets you scan the loaded database and find
objects according to simple criteria such as object type, access type,
class type, and function type.

Visual Builder and Browser Interaction

Visual Builder interprets and uses the data stored in a browser data-
base file. From Visual Builder, you can either read a database file or
call the QuickBrowse facility (provided that you started Visual Builder
from a WorkFrame/2 project).

You can use the browser information to:
I Create event-to-member function or attribute-to-member function

connections. Event-to-member function or attribute-to-member
function connections enable you to call a member function of a
part whenever the corresponding event occurs (see "Connecting
Parts" on page 29).

I Incorporate existing code with the Part Interface Editor (see
Chapter 8, "Creating Nonvisual Parts," on page 213.)

In both cases, Visual Builder loads the list of function definitions,
which you can then reuse. You can directly access those definitions
from the various Visual Builder editors. Figure 21 shows the GUI for
creating an event-to-member connection after the browser data is
loaded.

50 VisualAge for C++ for OS/2

Understanding Your Code

Figure 21. Visual Builder: Creating an Event-to-Member Connection

Debugging Your Code

The VisualAge for C++ Debugger lets you debug your 32-bit C or C++
code at the source level. You can also use it to debug child processes
and SOM objects generated through DTS or the SOM compiler.

The Debugger provides advanced features for breakpoint manage-
ment, memory management, and functions monitoring.

Breakpoint Management

You can set a breakpoint at any place in your program where you want
to stop execution. The Debugger supports simple breakpoints, such as
stopping when a certain line number in a source file is reached. It also
supports more complex breakpoints, such as stopping program execu-
tion when a certain address in memory is modified or putting condi-
tional breakpoints on variables. (For example, you can stop execution
whenever a variable in a loop reaches a given value.)

Chapter 2. Getting Started in a VisualAge for C++ Environment 51

Understanding Your Code

The Debugger supports the following breakpoint types:

Line Stops program execution at a specific line number

Function Stops program execution when the first instruction
of the corresponding function is called

Address Stops program execution when a specific address is
reached

Change address Stops program execution when the contents at a
specific address are changed; you can specify either
an address or a variable name to set such a break-
point.

Load occurrence Stops program execution when the program loads
the specified DLL.

When working with DLLs, you can defer breakpoints so that they are
activated only when the corresponding module is actually loaded. This
option is supported for line and function breakpoints.

You can manage all active breakpoints from the Breakpoint List win-
dow shown in Figure 22.

Figure 22. Breakpoint List window

Memory Management

With the cfrecfe beau zufre7t sfappj7tg option, you can perform memory
checks each time the program stops executing, for example, when a
breakpoint is reached. The check heap facility detects memory block
allocation problems such as writing data outside a block segment or
freeing the same memory block twice. When the Debugger detects a
problem, the program stops executing and displays the exact line
where the problem occurred.

52 VisualAge for C++ for OS/2

Understanding Your Code

Functions Monitoring

Advanced monitoring functions let you get a complete view of your
program's behavior. You can simultaneously track the call stack, stor-
age status, and registers value as well as analyze the graphical win-
dows if you are debugging a PM application:

Call Stack window
The Call Stack window dynamically lists all active
functions for a particular thread in the order in which
they are called.

Storage window
The Storage window dynamically displays the storage
contents and storage address.

Registers window
In the Registers window, you can display and alter the
contents of registers.

Windows Analysis window
With the Windows analysis window, you can graphi-
cally display the relationship among the graphical
windows that are created when you run a PM applica-
tion.

Debugging Session Management

For each application that you debug, you can choose to save the cur-
rent debugging session. The next time you debug that application, the
Debugger tries to restore the saved session, including breakpoints and
the various windows that were active when you stopped your previous
debugging session.

Chapter 2. Getting Started in a VisualAge for C++ Environment 53

Understanding Your Code

Performance Analysis
What's New and Nifty?

t+;`!,+i#fREE+t

• Product name: the Performance Analyzer
was formerly known as EXTRA. . Addition of
a window manager to navigate among the dif-
ferent views of your program . Dynamic man-
agement of trace generation (start and stop
buttons) . Perfstart() and Perfstop() func-
tions to insert in your code for better trace
granularity . Ability to trace up to 64 threads
• Ability to trace user and system library calls

The Performance Analyzer provides you with facilities to improve
application performance or to detect problems at run time that are dif-
ficult to find with a traditional Debugger.

When compiling and linking your program with the correct options,
you create hooks in your program. The Performance Analyzer uses
those hooks to create a trace file. The hooks cause a small monitoring
function to be called inside every program's callee function. The moni-
toring function stamps the event, dumps it into a trace file, and then
actually calls the function. Because the monitoring function is called
in the program's address space, the trace overhead is minimal. More-
over, all chronological diagrams take the trace overhead into account
and are therefore accurate. The Performance Analyzer uses a high-
resolution clock (provided by the CPP03PA.SYS device driver), which is
loaded at boot time in your CONFIG.SYS file. The DEVICE statement is
added to your CONFIG.SYS file at installation time.

Customizing Trace Generation

The Performance Analyzer views applications as a set of components.
A component can be the executable file itself, a DLL, an object file, or
even functions. You can influence the size of a trace file by enabling
components to be analyzed inside an application.

In you have a multithread program, you can exclude threads that you
do not want to trace and select the call depth for those threads. The
maximum number of threads you can trace simultaneously is 64.

If you need better trace granularity, you can modify your program
source. The Performance Analyzer provides two functions calls: Perf-
Start() and Perfstop(). You place the calls anywhere in your code to
start and stop trace generation.

The PERF(string) macro lets you create user events in the trace file.
The string you pass as a parameter is dumped into the trace file dur-
ing program execution. User events in the call nesting, statistics, and

54 VisualAge for C++ for OS/2

Understanding Your Code

time line diagrams appear as diamonds. You also can trace system call
events by linking with specific libraries, such as doscall.lib or
-pmgpi.lib.

Performance Analyzer Diagrams

From the trace file that it creates, the Performance Analyzer provides
several diagrams that you can use to time and tune applications, trace
thread interactions, find where a program hangs, and detect dead-
locks. Filters allow you to temporarily reduce the amount of data dis-
played in a diagram or graph. The filtering options may vary from one
diagram to another but are essentially based on thread numbers and
function names.

CcIZZ Ives££7®g DfclgraJm. The call nesting diagram shows the trace
file as a vertical series of function calls and returns. Each thread has
its own starting column of functions. Use this diagram to build an
understanding of thread interaction in your program-each context
switch between threads is represented by a dotted line-and follow
the flow of function calls in your application.

To reduce the amount of data displayed by the call nesting diagram,
use the pattern recognition option, which looks at a single thread and
finds patterns of calls and returns. The patterns are displayed as
curved arcs, and the number of repetitions is indicated on the right-
hand side of the corresponding arc, as shown in Figure 23. The pat-
tern recognition view helps you isolate patterns of code that you reuse
frequently. Then, for better performance, you can group instructions
belonging to a pattern into the same code segment.

Figure 23. Call Nesting Diagram window

Chapter 2. Getting Started in a VisualAge for C++ Environment 55

Understanding Your Code

Dy7®cI7„£c Cc[ZJ Grapfa. The dynamic call graph is a graphical view of
the application execution, where functions and functions calls are rep-
resented, respectively, by nodes and arcs. Selecting a graph node gives
you access to execution statistics for the corresponding function and
filtering capabilities such as "Who calls me?" or "Whom do I call?" (See
Figure 24.) The dynamic call graph uses color to represent the time
spent in each node and the number of calls in an arc. For example, a
red-colored node indicates that more than one-half of the total execu-
tion time was spent in that node.

Figure 24. Dynamic Call Graph Window

E#ecz4££oJ® DeJ®szty DfclgroJm. The execution density diagram dis-
plays execution time divided into fixed horizontal time slices. If you
compare this graph to a table, you can see that each row is a time slice
and each column is a function called during the time slice. Color is
used to indicate the percentage of the time slice that the function uses.

SfcJ££s££cs DZcEgrom. The statistics diagram summarizes all data
about functions or executables. Functions can be sorted according to
execution time, time on stack, and minimum and maximum time for a
call (Figure 25). The trace overhead time is also listed.

56 VisualAge for C++ for OS/2

Understanding Your Code

Figure 25. Statistics window

T¥]me L£7ie DfclgrcIJm. The time line diagram displays the sequence of
nested function calls and returns. It is similar to the call nesting dia-
gram, with the exception that time is represented on the diagram.
Time is divided into horizontal time slices, and function names appear
on the right-hand side of the diagram.

Wj]®cZozus correzcI££oJ®. All chronologically scaled diagrams (time
line, call nesting, and execution density) can be correlated according to
a particular event or specific point in time. Thus, you can select a time
period in the time line diagram and use correlation to get a different
view of it in the call nesting diagram.

Chapter 2. Getting Started in a VisualAge for C++ Environment 57

Understanding Your Code

58 VisualAge for C++ for OS/2

Part 2

Opine vvith
IAge for e++

If you only have a hcunmer, all your problems look lihe a nail. (Proveho)

In the rest of this book you will learn how to build a real-life applica-
tion, the Visual Realty application, that supports real estate agents
who manage properties and customers. A customer of a real estate
agency is either a seller who wants to sell property and asks the
agency for assistance or a buyer who wants to be the proud owner of
new property. So, an agency must keep track of properties that are
available for potential buyers and mediate between sellers and buy-
ers. Potential buyers have particular notions of the kind of property
they want, so an agent must be able to search for property that
matches their notions.

Our goal is not to build a complete application that would solve all of
the problems of real estate agents. Rather, we want to illustrate how
to apply VMT and use VisualAge for C++ tools to build a good object-
oriented software system.

59

In Part 2 we analyze and design the Visual Realty application to
develop static and dynamic models that you will implement with
VisualAge for C++ in Part 3.

60 VisualAge for C++ for OS/2

sts at Work
Analysis I,ets you stay ignorant, but wi,th much more detcal.

- (The Financial Procedures Handbook, Apocrypha)

To illustrate the process of object-oriented application development we
can compare it to the process of writing a novel, because there are as
many potential domains to describe in a novel as there are different
software domains. We focus on novels that entertain (but not dime
novels) because with more complex literature we might lose sight of
our actual goal. We do not want to teach dramaturgy or style. Rather,
we want to show what the art of writing novels and the art of develop-
ing software have in common (from the distorted points of view of com-
puter specialists).

Without playing down the complexity inherent in software develop-
ment, we want to demonstrate that you can intuitively learn how to
apply object-oriented methods. You should not expect, however, to
derive benefits from using this approach at the very beginning. It is
obvious that the reuse of code in your first project is not of as great
importance as it will be in future pro].ects. As usual, you must gather
experience yourself or hire someone who has experience. Likewise,
you cannot expect to write a successful novel if you start writing now.

61

Collecting the Material

In the sections that follow you play the role of a novelist, and we are
assigned to be the software developers applying the approach sug-
gested by VMT. We assume that, as a novelist, you do not write as a
hobby but want to sell your book in bulk, just as we want to sell our
applications to become rich and famous. If you were to write novels
just for your private fun, you could write whatever you want without
obeying any rules. The same would be valid for us: If we created appli-
cations to satisfy our own needs, nobody would blame us if we wrote
our code in the old-fashioned, poorly documented, spaghetti-like free-
style.

Before we proceed, let us state the big difference between writing nov-
els and developing software applications: Writing novels is an art;
developing software is applied science. Therefore, although object-ori-
entation aims to "industrialize" software development some day,
assembly-line production is not desirable for the process of writing
novels (but we notice such a trend when we look at light fiction). We
want to be able to enjoy future novels and admire an author's particu-
lar style of writing that fills his or her characters with life and
unleashes our imagination. Nevertheless, we want to compare the two
processes because software development undeniably involves the
developer's creativity and imagination.

Although we cannot partition the preparatory work of an author into
analysis and design phases, we discover that preparing to write a
novel and the preliminaries of software development have a great deal
in common. For example, the preparations take considerably more
time than the actual writing or coding. In this chapter we deal with
the analysis phase, and in Chapter 4, "Designers at Work," on page 83,
we focus on the design phase.

Collecting the Material

If _you put yourself in an outhor's place, how u]ould you proceed? Fi,rst
of au, _y_ou _would define your subject, answering the following ques-
tipns.. Wo¥!d you li,he to ujrite a historical, contemporary, or science ftc-
ti,on noijal? Whi,ch coruleuts should, your novel cover? (Couteuts includ,e
the historical period, the location, and th,e culture.) Should, your novel
be a romance, a crime story, a biography, or a drcuna? If you do not
hnouj u]h,ct you ci,re going to write about, you simply carmct begin, and,
if you hcLve only a vague idea of th,e coicterits of your boch, you should,
not begin, unless you ujant to ri,val some intractable software develop-
ers.

The decision that has th,e greatest inpact on your novel concerns the
subject of the main story. Th,is decision infouences your style as wed ci,s
the selection of th,e participating ch,aracters. You rhighi combi,ne several

62 VisualAge for C++ for OS/2

Collecting the Material

subjects., for example, if you wri,te a biography, your protagonist proba-
bly experiences the ijicissitudes of life, ijjhich include love, jealousy, pas-
sion, grief, comedy, and despair, to ncune a feu).

First, you certainly want to crecite an outli,ne of the main story, that is,
the tJuread of th,e entire novel. Your publisher probably ujants to look ct
your abstract to decide whether your story is promising or a reject. You
should formulate your outline clearly, so that your publisher cci,n follow
it. Surely, you will not succeed in formulating your outline on first try.
You probably wi,ll read it, delete some sentences, rearrange it, or even
start all ouer again. Your final epitome reveals what your novel essen-
tially i,s about and serues as a guide, as you further develop your novel.

Let us consid,er u)hat you should, i,ncl,ud,e in your outline of the main
story.. You should define certai,n "constonts" before you start ujriting,
ncrm,ely, the I,ocction of the action, the historical period,, the principal
characteri,sti,cs of the leading roles, and the th,read of the plot. To create
a successful story you sh,ould research the characters of your noual and,
if possible, inspect the I,ocati,ons where the euents tche place.

Problem Domain

When we start developing a software application, our first task is to
analyze the specific problem domain, distinguish it clearly from the
real world, but not worry about any constraints that the implementa-
tion environment would impose; in object-oriented application devel-
opment we call it object-oriented analysis (OOA). The result of our
analysis can be directly compared to the outline for your novel, as it
answers the "what?" question. In other words, we define the complete
function of the application and the system boundaries. Initially, we are
probably better off than you are, because our customers tell us what to
do; that is, they give us their requirements for the application.

After we have collected all material that is relevant to the system, we
must arrange and put the finishing touches on our customer's require-
ments. Generally, the specifications lack completeness or exactness
and show redundancy. To complete the requirements, we must learn
about our customer's business domain and its terminology. On our
first try seldom (between you and me, never) do we succeed in cor-
rectly defining what we should develop. Through ongoing communica-
tion with our users, however, we gradually acquire both the knowledge
and understanding that are essential to fulfilling our task.

The deliverables of the analysis phase help us understand the problem
domain as they provide different but complementary views or descrip-
tions of the system that we develop. The deliverables are the complete
and exact requirements specifications, the use case model, the
sketches or prototypes of the user interfaces for each use case, the

Chapter 3. Analysts at Work 63

Collecting the Material

class dictionary, the CRC cards for all classes, the static object model,
and the dynamic model (refer to VIsz/CIZ jl4lodezzJ?g Tech7?jgz/ecoz)y.ec£
Tlech,nology Using Visual Programming by D . rFkaLch ch al.) .

F}equirement Specifications

We developed seven problem statements when we first thought about
the daily work of a real estate agent:

1. Manage buyers

2. Manage sellers

3. Manage properties
4. Manage sale transactions
5. Thack earnings

6. Document activities

7. Exchange data with the agency's computer

To keep the implementation simple, we established the following con-
straints:
I The application would not cover

> Seller management
> Sale contracts
> Documentation of agent activities

I The commission for an agent and the down payment for a property
would be fixed values computed from commission and down pay-
ment rates.

I Agents and buyers would negotiate directly concerning the sale.

We know that our seven problem statements will not drive us to seize
the closest keyboard and start hacking the code, because they are
rather vague. So, we must define more precisely what we mean. Pref-
erably, we formulate the definitions together with our customers,
because they know best what they want.

In fact, we visited a real estate agency and interviewed two of the
agents to learn how they do their].ob and how computers might help
them. Our interview with the agents led us to refine the seven prob-
lem statements, as you can see in the 12 requirement specifications
listed below. 'I\nrelve requirements specifications can in no way handle
the real estate business. If, however, we had to describe everything
that a real estate agency requires, this book would be a multivolume
encyclopedia, and you would have to read a huge amount of analysis
and design scribblings before you could learn VisualAge for C++.

64 VisualAge for C++ for OS/2

Collecting the Material

You also can see, in the requirement specifications listed below, the
transition from the rather simple, initial problem statements to the
elaborate, precisely defined requirement specifications (for example,
we explode the first statement into three specifications).

1. Record, update, and delete buyer information and prefer-
ences.
Here, the terms bz/yer Z77for777c}£Zo7t and bz/yer prefere77ces must be
further defined. As you know from Chapter 1 ("Objects" on page 6),
real-world objects have a tremendous number of attributes, but
our application must concentrate on those that are most impor-
tant for the problem domain. (The process whereby one tends to
concentrate only on the relevant information for the problem
domain is also known as cLbsfrcLc£Zo7?.) So, we decide that buyer
information includes the buyer's name, identification (social secu-
rity number or driver's license number), telephone, address, and
household income. Buyer preferences, which describe a buyer's
particular notion of a property, include price range, size range (in
square feet), number of bedrooms, number of bathrooms, number
of stories, type of cooling, and type of heating.

2. Search buyers by name.
It should be possible to search buyers by last name. It should also
be possible to do a "pattern" search; for example, look for all buy-
ers whose last names start with "Que."

3. Show the buyers who are interested in a selected property.
From a list of properties, the agent can select one and retrieve the
buyers whose preferences match the property characteristics. The
buyers should be listed so that the agent can select one to retrieve
the detailed information.

4. Record and update property information.
Here, registration number, address, area, number of bedrooms,
number of bathrooms, number of stories, size (in square feet), type
of cooling and type of heating are of interest. Further, a second cat-
egory of information is relevant for a property, namely, marketing
information, such as price, price per square foot, commission for
the agent, commission rate, number of days the property has been
on the market, down payment rate, down payment value, and sta-
tus (available, sale pending, or sold). Note that some attributes of
the property information match the attributes of the buyer's pref-
erences. Additional features or information about other categories
that do not fit with the preceding attributes can be entered as tex-
tual description. A video that features the property completes the
property information.

Chapter 3. Analysts at Work 65

Collecting the Material

5. Show available properties of interest.
List the properties that have the "available" status and match
some specific criteria, such as area, price range, size range, mum-
ber of bedrooms, and number of bathrooms. These properties
should be listed so that the agent can select one to retrieve the
detailed information

6. Show affordable properties.
List the properties that have the "available" status and that a
selected buyer can afford according to his or her income. The mort-
gage calculation should remain simple.

7. Display description or video of a selected property.
This feature provides potential buyers with a first impression of
the property. On the basis of this first impression, they can either
take a closer look at the property or avoid visiting it in vain.

8. Show the properties in which a selected buyer is interested
(based on his or her preferences).
From a list of buyers, the agent can select one and retrieve the
properties whose characteristics match the buyer's preferences.
These properties should be listed so that the agent can select one
to retrieve the detailed information or show the video.

9. Initiate, confirm, or cancel a sale transaction.
The agent initiates a sale transaction when a buyer decides to buy
a desired (and affordable) property. The agency must go through
several processes until the buyer is finally the owner of the prop-
erty. For example, it must determine whether the buyer has liquid
assets or is creditworthy, but the Visual Realty application does
not cover these processes. Instead it creates an agreement form,
which states that the property is reserved for the buyer for 10 days
from the date of signature. During that period the property is
marked as "sale pending." The agreement also states that the
buyer has provided a down payment as proof of good faith. If the
transaction is canceled, the agency returns the down payment,
marks the property as "available," and destroys the agreement
form. If the transaction is confirmed, the property is marked as
"sold," and the agent's account is credited with the proper commis-
sion.

The agreement form contains the property's registration number,
area, address, and price; the buyer's identification, name, and
address; the amount of the down payment; and the date of the
agreement.

10. Search agreement forms by date.
This function enables the agent to list all properties marked "sale
pending" and to examine the associated sale transactions.

66 VisualAge for C++ for OS/2

Thread and Subplots

11. Show how much commission the agent earned during the
current month.
We assume that there is a one-to-one relationship between agent
and computer, so the application shows the sum of the commis-
sions for the sold properties.

12. Receive from the agency's computer or send to the agency's
computer properties, customers, and sale transaction data
that is relevant for the agent.
The agency should be aware of its agent's activities, track the sta-
tus of each property, and acquire information on new prospects.
All information about properties, buyers, and agreement forms is
transferred to and from the agency's database. We must consider
that a real estate agency usually employs more than one agent.
The agency is responsible for maintaining the database, keeping it
synchronized, and assigning properties and buyers to agents.

Just as your publisher should agree with your abstract, our customers
should understand what we write down and fully agree with the func-
tions of the system. If they do not agree, we must add other specifica-
tions or redefine them. At this stage of analysis, we iterate the
refinement of the specifications to ensure that the problem definition
is accurate.

Thread and Subplots
Your first cut must be appealing enough to coiwince your publisher of
the potential success of the book. Before you del,i,ver your ujorh, you
sh,ould consult u)ith some relJieu)ers, perhaps cL friend or your spouse
u)ho can assess whether the foow of the story is comprehensible. Note
th,ct ct first you creccte th,e skeleton of the story, and, only I,cter do you
embelli,sh i,t.

In your nouel you not only tell the mat,n story, you al,so del,i,neate several
subplots that run concurrently or sequentially. Subplots mcLhe the story
more interesting, create tension, and mcLhe you,r readers sti,ch to the
book. W.hal,e you shetch the thread of your story, you focus on th,e plots in
which your protagonist i,s i,nvolued. If you wanted to summari,ze
Mi,ch,Gel Ende's book, rFheRTevererrding Story, you could do so very con-
cisely: a boy is cLbsorbed by cL book and seeks out a neu) envi,ronment.
Wh,en h,e learns that his u)orld is going to uanish, he tri,es to rescue it
u)i,th, his imagination. (Do not go to your publish,er u)ith only tu)o serb-
tences!) Michael End,e used seijeral hundred pages to embroider and
embellish his story ; that is the actual art of u)riting.

Chapter 3. Analysts at Work 67

Thread and Subplots

We software developers, however, must ensure that our project does
not turn out to be a never-ending story. We have already collected and
completed the customer requirements. At this stage, we must discuss
with our users all services of the system, because our first model must
capture all of their functional requirements. We group the require-
in.eIT+s i:IT+o Tlse ca[ses, which are ...behauiorally rel,ated sequences of
transacti,ons i,n a dialogue ujith the system (Object-Oriented, Softu)are
Engineering. A Use Case Driuen Approach by Jacohoson et. al, p.127).

Use Case Model

We write down use cases in the form of a dialog with complete sen-
tences and assign a unique title to each. The dialog represents an
interaction between the application that performs the function and
the user of the system. According to Jacobson, a use case does not con-
tain conditional branches, that is, each use case describes one distinct
sequence of functions. If a function of the use case depends on the suc-
cessful completion of a preceding function, we must define a second
(alternative) use case that covers the event when the preceding func-
tion fails. In this case, an "extend" relationship represents the exten-
sion between the two use cases. In addition, a use case behavior can be
embedded in other use cases, leading to a "use" relationship
(Figure 26). Actually, to write the use cases we present the require-
ments specifications from the different users' points of view. In our
case we only have one user: the agent.

Actor

Figure 26. Use case Representation

Throughout this book we focus on realizing problem statement 3, that
is, jl4lcI7tclge praper£Zes, so the following examples of use cases relate to
requirement specifications 4 and 5.

68 VisualAge for C++ for OS/2

Thread and Subplots

Record Property Case
Agent: Call the Record property functi.on.
System: Present a form that the agent must fill in to speci.fy all of the

requi.red informatl.on for a property.
Agent: Fi.ll in the form and cli.ck on an OK button or the li.ke.
System: Veri.fy the i.nformati.on and store i.t i.f I.t i.s correct.

Property Search Case
Agent: Call the Search property function.
System: Present a form that the agent must fi.ll in to speci.fy the

I.terns of interest.
Agent: Fi.ll i.n the form and start a search.
System: Present the properti.es that match the speci.ficati.ons.

Jacobson also designates users of the system as actors to emphasize
thai users prday roles. (Object-Oriented Software Engineering. A Use
Ccbse Drjzje77 ApprocLch by Jacobson et. al, p. 171). A certain role, or
type of user, is assigned to an actor. Usually, our application supports
several actors: the "normal" actor, supervisors, and system adminis-
trators. The normal actor of the Visual Realty application would be the
agent (Figure 27). The supervisor would be the manager of the agency,
and the system administrator would be an office worker who cares
about the consistency of the property database. Consequently, one per-
son can play several roles. For example, John is a real estate agent
who calls functions of the property management and, as he sometimes
works in the office, of the system administrator, but he is one single
user of the system. On the other hand, Mary and Demise, the general
managers of the agency, are only interested in calling the supervisor
functions to control John; they are two users playing one role. Gener-
ally, the use cases that normal actors activate make up the system's
principal functions, which we focus on during the analysis phase. That
is why we interviewed real estate agents and not their managers.

Actors are not necessarily humans; they can be external devices or
other computer systems (Figure 27). Each use case is related to at
least one actor. The set of all use cases describes the entire function of
the system. Together with the set of all actors, it constitutes the use
case model. Every actor must be connected to at least one use case,
and vice versa; an unconnected actor or use case would be superfluous.
In addition, an actor is outside the system; that is, it does not belong
to the problem domain, so we do not describe its function in detail.

Chapter 3. Analysts at Work 69

Thread and Subplots

Agent

r _ _ _ _ _ _ | r _ _ _ _ |

l,o~Office

: Sseha:=Prro°ppee:tyv,deo `\!\ i C) i

I:::eotredpprr°oppee:ty~~!\[:\=ranTacisn-:

r\----
Update property \ I

I

I Uploadproperty I ,

Ill

i _ =ow=oa=rop=rty_ I I C2_ _ I
Property Buyer

Figure 27. Visual Realty Use Cases

The use case model is fundamental, as it is the collection of all require-
ments and serves as input for all subsequent models that will be
developed, including the final model-the source code. The system's
overall function is reflected in the use case model, and we take the use
cases to develop the analysis model, the design model, and the source
code. Every model can be tested against the use case model for com-
pleteness and consistency. If we must change or enhance the applica-
tion, we do so by first adding or changing one or more use cases and
then changing the other models accordingly.

The use case model also helps to maintain the traceability of the sys-
tem because we know from which use case each component of the later
models derives. Remember that traceability is the most important
characteristic of our system, as it enables us to make corrections and
modifications in a straightforward manner.

User Interface Prototype

Because we have described the system's functions in the form of use
cases, we can envision the user interface of the application prototype.
We know which function each actor can invoke, so we can illustrate for
potential users what the screen might look like (Figure 28). We can
sketch the interface on white paper and then (if we are skilled enough
and well equipped), start Visual Builder and paint the screens right

70 VisualAge for C++ for OS/2

Defining Poles

before our customer's eyes. Sometimes, a prototype of the user inter-
face makes the customers bubble over with a wealth of ideas, because
they finally see what they can do with computers. In this case, we
should stay cool and not promise too much

Property Information Marketing Information

price lT
p rice/sqft -
Days on Market I

DownpaymentBate I

Downpayment I

Commission Fate I

Commission I+

Figure 28. User Interface Samples

We suggest starting with the most important use case and developing
the interface with a top-down approach; that is, begin with the main
screen and then define the secondary windows, dialog boxes, and pop-
up menus. Again, we come to the best solution after some iteration.

Defining F}oles

Before you start u)riting, one of your important decisions is th,e selection
of the characters of your novel. Initially, you only rough, out their traits.,
you refine thel'n later. Berry Morrow, u)ho wrote the screenplay for the
movie REri:nNIEIn, says.. "Creating a character is like shaping a lump of
clay, or li,he whittling a stich." First, the chcLracter i,s rather amorphous.,
that is, you haue only a vague idea of his or her being. Then, the first
broad strohes begin to define the ch,aracter, and you add emotions, uar-
ues, cued ctti,tudes to provide depth. You also ccl,n infuse your charcLcter
wi,th conflicting behauiors to increase the i,nterest and tensi,on of your
readers (for excunple, your character is a tough broker who senti,men-
tally loues his or her children).

Chapter 3. Analysts at Work 71

Defining Boles

To create a noijel, you ccLn select from seueral patterns, and the pattern
chosen determines the traits of you,r characters. If you decid,e to u)rite a
romantic novel, you wth d,ear wi,th loue, fidelity, affection, sacrifice, and
yearning on the one hand„ and infidelity, indifference, and, heartless-
ness on the other hand,. If you decide to u)ri,te a crime not)el, you wth
deal u]ith cruelty, loneliness, revenge, ci,s well ci,s heroism, justice, and
readiness. Ylou can mi,x several patterns ujithin your noijel to mche it
more interesting, but the main thread fcklows one distinct motif.

Patterns and Types

The patterns for software systems as well are numerous and varied.
The 77}czchz7?e co7tfroz pattern provides a modest user interface that
consists only of some switches, sensors, and digital or analog indica-
tors but must react very quickly to changing process states; sometimes
a delay of 1 millisecond can have fatal consequences. The bz/sZ77ess
graphic pattern must provide a highly elaborate user interface, but
the response time is not so crucial. The co77tpjze7- pattern must hold a
lot of information during run time, whereas its user interface is poor,
and the response time is of (almost) no importance.

The pattern of the application that we develop determines which
object type we must primarily use in our system. Jacobson defines
three object types: interface objects, which are responsible for commu-
nicating with the world outside our system; entity objects, which
mainly store information; and service objects, which control the flow of
operation. Highly dialog-oriented applications primarily use interface
objects, data-oriented systems primarily use entity objects, and ser-
vice objects prevail in function-oriented applications.

Do you recognize the correspondence between your characters and our
objects, and your characters' traits and our objects' types? As our com-
puter environment is rather unemotional, we deal with only a few
object types but many objects. We notice that for each actor (remember
that an actor is a user or device outside the system) there must exist
at least one interface object, as an actor communicates with our sys-
tern. Our system also contains at least one entity object, which holds
the current state of the process that is running. Service objects are
necessary only if we cannot clearly assign a certain function to an
entity or interface object or want to guide our user through a sequence
of operations.

72 VisualAge for C++ for OS/2

Defining Boles

Finding Objects

To find the objects of our system as well as their attributes and func-
tions, we must analyze the requirements specifications syntactically
and semantically. As a rule of thumb, we can say that nouns in a for-
mulated sentence represent objects, adjectives represent attributes,
and verbs represent functions.

So, let us have a look at requirement specification 1: Record, z4pdcIfe,
and del,ete buyer information and preferences. TTiis apechfieation teTis
us that we must deal with buyers who have information and prefer-
ences, and the user should be able to record, update, and delete that
data. If we obey our rule, we would come up with three objects (Buyer,
Information, and Preference), but we already have found the famous
exception to the rule, because some nouns can represent attributes.
And a Buyer object with information and preference attributes sounds
reasonable because information and preference are tightly coupled to
the buyer, as we can see from the context of the requirement specifica-
tion.

Another exception to the rule: synonyms. Often, we encounter syn-
onyms for an object because we interview different people, or we pick
up information here and there and write it down, each of us in our own
terms. Thus, during the search for candidate objects and their proper-
ties, we must homogenize and structure the requirement specifica-
tions and agree on common terms.

Requirement specification 2, Sec!rch bL4yers dy 77cb77ie, confirms that
7tcb77?e is an important attribute of the Buyer object and introduces the
search function that must be applied for a set of buyers.

SFlecrfucatin. 3, Show the buyers wh,o are interested i,n a sel,ected prop-
erdy, reveals a new candidate object, namely Property. As the business
of real estate agencies is about properties, there is no doubt that prop-
erty is a real object. In addition, this specification hints that there is a
link between the Buyer object and the Property object. The link is
based on the property characteristics. We come back to links between
objects in "Defining Interactions and Relations" on page 76.

Specifications 4 through 7 , Record and update property information,
Shou) avatlabl,e properties of interest , Shou) afford,able properties , E[nd
Display description or I)i,deo of a selected property, teHl us which
attributes are necessary for the Property object and provide informa-
tion on a second link between buyer and property based on the buyer's
income;. SpecificEinon 8, Show the properties in ujhi,ch a selected buyer
Zs Z7tferesfed, also indicates a link between buyer and property. The
link is based on the buyer's preferences.

Chapter 3. Analysts at Work 73

Defining Poles

Speci:fliciinons 9 ELnd ±0, Initiate, confirm, or cancel a sol,e transacti,on
and Sec[rch ogree77?e77£ for777s dy dcIfe, introduce the Sale 'Thansaction
object with the agreement form and date attributes. Specification 9
states that the agent initiates a sale transaction when a buyer decides
to buy an affordable property. It introduces the Agent object and
reveals a link among buyer, property, and agent. The agent manages
information on buyers and properties. This leads us to consider two
other links among these objects.

Finally, specifications 11 and 12, RecezzJe from fhe c!ge7?ay's co7xpz/£er or
send to the agency's computer properties, customers, and sale transac-
tion data that is relevant for the agent EIITd Shouj how much commi,s-
sion the agent earned during the current month, desorThe three
additional service functions.

So, through this syntactical analysis we discover the following objects:
Buyer, Property, Sale 'Thansaction, Agent. The next step is to group the
objects into classes. If the problem domain is small, as it is in the
Visual Realty application, every object typically maps to a class. If we
include the management of sellers in the problem domain, we could
group the Seller and the Buyer objects into the Customer class.

Class Dictionary and CF}C Cards

The traits of the characters in your novel are uniJei,led in the u)ay they
thinh, talk, and, beh,owe. It ujould, be worthwhile to establish a fact file
for every character i,n your novel. The fact file would include, for excl,in-
ple, the particular behowiors, drecuns, and appearcunce of each ch,arac-
ter. If you haue a talent for drawing, you might euen sketch your
characters. The goal i,s to crecite vivid characters ujho have consistent
traits and with u)horn your readers can identify. For the most part, the
characters impel the action; sometimes, hou)euer, some fateful events or
coi,nci,d,ences give a fresh impetus to th,e course of the story.

As we mentioned earlier, we software analysts must deal with actors
who are outside the system; they are users of the system and the main
initiators of the flow of the system's functions, but they do not execute
the functions themselves. The object-oriented approach assigns the
responsibility of executing functions to objects.

class Dictionary

As software analysts we also must set up a fact file. Ours is a class dic-
tionary that contains an entry for every class. As you can read in
"Classes" on page 7, classes describe the attributes and functions for a
certain group of objects. Thus, the entry in the dictionary describes the
class responsibilities and the attributes that the class must have. The
class dictionary helps us correctly define and develop the classes and

74 VisualAge for C++ for OS/2

Defining Poles

serves as a means of communication with our customers. The defini-
tions and responsibilities must be formulated in complete sentences to
create a stable base for our object model. We must avoid "woolly" dic-
tionary entries from the beginning, so that we can rely on our classes
and regard each entry as a binding contract. We can also see whether
the existence of a certain class is justified: If we cannot assign any
responsibility to a class, we can remove it.

CF?C Cards

Wirfs-Brock suggests the use of CRC cards, which can be regarded as
extended class dictionary entries because they describe the responsi-
bilities and collaborators of a class. To save some paper or files on our
hard disk, we decide to combine the class dictionary and CRC cards so
that a CRC card contains not only the name of the class but also its
complete description. We also suggest omitting the default functions
that exist for almost every class: create, delete, and update. However,
some classes depend on those functions. For example, as you can see
in Table 2 and Table 3, we cannot delete a buyer who initiated a sale
transaction that has not been canceled or confirmed.

Table 2. Extended CRC cards for Buyer

Description Person who wants to buy a property

Attributes ID
name
telephone
address
income
preferences

Responsibilities Collaborators

delete Sale transaction

Chapter 3. Analysts at Work 75

Defining Interactions and Pelations

Table 3. Extended CRC cards for property

Description Real estate managed by the agency

Attributes ID
address
area
number of bedrooms
number of bathrooms
number of stories
size (square feet)
cooling type
heating type
textual description
video
price
price per square foot
commission
commission rate
down payment rate
down payment value
number of days on the market
status

Responsibilities Collaborators
search Buyer (preferences)

Table 4. Extended CRC Cards for Sale Transaction

Description Recorded information for the business process sale

Attributes date
agreement form
buyer identifier
agent identifier
property identifier

Responsibilities Collaborators
initiate Property
cancelconfirm Buyer

Defining Interactions and Relations

The characters in your novel do not I,ive in isolation; they establish
relationships among themseli)es. Before you start writing, you outli,ne
when your characters meet ij)ith, other characters and, determine
whether these meetings hc[ve any effect on the subsequent action. The
relationships may create or resol,ue confoicts and increase suspense and

76 VisualAge for C++ for OS/2

Defining Interactions and Pelations

expectation. Most importaruly, you must synch,rohize the sequence of
the encounters. Some encourtters hove more influence on the behavior
of a person than others. Some can even completely change a character.

You must tche i,nto considercti,on that ujh,en you deal with tujo ch,arac-
ters who hove a relationship, th,ere are tu)o conflicts from each charac-
ter's point of uieu). If another character appears-you might thine of a
love triangle-you must manage si,x corflicts, as each of the characters
has tlJJo relationships.

To keep track of the dynamics, you lJ)th u)ant to record encounters and
current and future relationships i,n your fact file. If you must handle a
more complex constetlction, you wth wcnd to make some sketches on a
piece of paper that visually document the connections. The rel,ati,on-
ships ci,re not necessarily of the real u)orld; they could be a figment of
one's imagination.

During the software analysis phase we build static and dynamic mod-
els that illustrate, respectively, the interactions and the relationships
or links among objects.

Interactions

VMT applies two different kinds of diagrams to form the dynamic
model: the event-trace diagram and the state-transition diagram. The
event-trace diagram describes how the participating objects interact
during the execution of a use case. We must create such a diagram for
each use case to gain an overall view of the system's functions. We can
then summarize all functions or responsibilities with their parameters
that are related to a particular object. Because several people might be
involved in creating the diagrams, the names of the functions and the
number and sequence of their parameters must be homogenized. The
diagram (Figure 29) represents objects as vertical bars and the events
as a horizontal link between the objects.

Chapter 3. Analysts at Work 77

Defining Interactions and Pelations

UI object aprop

select 'create property' 11-

/_ZZ
request characteristics, price,

commission, status, address

_,/JZZ
enter characteristics, price, verify

commission, status, address - char.ate -

Z- I-

Cr

-return'OK'

_/

System Boundary

Figure 29. Event-'Thace Diagram for the Record Property Use Case

The state-transition diagram focuses on one object only, regarding it
as a finite state machine. It shows every state that the object takes on
as the result of an executed function. Each object has an initial state,
one or more intermediate states, and, optionally, a final state. Each
state is implemented as a distinct value of an attribute of the object.
The diagram represents the states as nodes and the event that causes
the change of the state as an arc between the original state and the
resulting state (Figure 30).

78 VisualAge for C++ for OS/2

Defining Interactions and Belations

Stop

Figure 30. State 'Thansition Diagram of property Status

To avoid having to develop an overwhelming number of diagrams, we
are interested only in objects with state changes that are significant
for the process flow. A negligible state change would be when the age
of a buyer switches from 39 to 40 (although it is of some importance for
the person concerned); an important state change would be when the
age of a sale agreement form switches from 9 days to 10. We check the
state-transition diagram against every event-trace diagram in which
our object is involved to ensure completeness and consistency.

Relationships

The static object model, often simply called the "object model," shows
the hierarchy and the coherence of the objects. The coherence is the
static relationship, also called the cbssoczci£Zo77, among the objects.
VMT adopts Rumbaugh's notation to draw the object model and the
associations (Figure 31 and Appendix 8, "OMT Notation," on page
343). We assign meaningful names to the relationships so that we can
formulate a complete sentence when we take the name of the first

Chapter 3. Analysts at Work 79

Defining Interactions and Belations

object as the sentence's subject, the name of the relationship as the
predicate, and the name of the second object as the sentence's object.
For example: The link between Buyer and Property is established by
the buyer's preference, so we name the link "prefers" and read the link
as ``Buyer prefers Property." There are different forms of associations:
one-to-one, one-to-many, and many-to-many.

Figure 31. Analysis Object Model of the Visual Realty Application

A special relationship between two classes is inheritance (see "Inherit-
ance" on page 8). We could have constructed subclasses of Property,
namely, Building and Plot, but we found that the agency does not dif-
ferentiate between these two kinds of real estate.

In Figure 31, you see six classes and ten associations. The relevant
classes are Buyer, Property, and Sale 'Thansaction. The relevant associ-
ations are Buyer can buy Property; Buyer prefers Property; Property

80 VisualAge for C++ for OS/2

Defining Contexts

attracts Buyer; Sale Thansaction involves a Buyer, a Property, and an
Agent; Seller sells a Property; and Agent manages a portfolio of Prop-
erties, Buyers, and Sellers.

Attention

For the purpose of completeness, Figure 31 shows the Agent and Seller
objects and their links. As mentioned in the introduction, the application
does not manage the seller. In addition, the application depicts a fictitious
real estate agency where only one agent works. Therefore, the application
does not manage the agent information.

Defining Contexts
The time during u)hich your story unfolds and ujhere it tches_place are
of great importance, ci,s they influence the beh,cwior of yo¥r chcLracterp..`
For excunalle, if your nouel i,s set in some past era, your characters w_i.Il
necessarlfly haue to speck in a vocabulary that i,s noncontemp_orary. Th.e
ti,me and,-location of your novel will undoubtedly require thq± y_ou d_p
some research and look i,n Z{braries for releuant documerits. The benefit
of this bigger effort mighi be that you attract tho_s? r_eade_rs whp are
ispecialli interested in learning som_etJiing_ ab.out lif e_ in_.oth_er c`pltures
o; epochs; you mighi thine of Noah Gordon's novel, rThe_N±eqin+.s., a
medieval epoch that aroused his readers' erithusiasm and thei,r thirst
for a sequel.

Here it might be difficult to draw an analogy with OOA. However,
when we must analyze an existing application that we want to adopt
in our new system, is it not appropriate to research the past? The
existing software was developed in the past, so we must consult the
documentation (which sometimes exists) and look in the software
libraries for the underlying functions of the system. We can also ask
former developers how they planned the implementation and mainte-
nance of the system. As for the location of our application, we must
consider the hardware and software platforms and many other param-
eters that relate to the implementation.

00A excludes reflections on the implementation environment, as we
want to achieve an analysis model that is independent of any con-
straints. Certainly, we must consider the feasibility of our project in
terms of the time frame and available financial resources. In addition,
we should know something about the user interfaces of the system.
Because we and our customers must clearly understand the analysis
model, it cannot contain descriptions that are too formal or drawings
that are too complex.

The primary goal of the analysis model is to use it to communicate
with our users, who are not necessarily acquainted with our software
terminology. Thus, we must name the objects and their attributes and

Chapter 3. Analysts at Work 81

Defining Contexts

functions with terms that our users understand. Therefore, we use the
same terms that appear in the problem statements, so that sometimes
the analysis model is also called the semantic model. Actually, it is a
symbolic representation of the formulated requirements specifica-
tions. We should be able to translate the analysis model into the speci-
fications without difficulty. On the one hand, the model represents the
requirements that have been completed and normalized; on the other
hand, it serves as a generalized description of the implementation.

As mentioned before, we develop the analysis model without regard to
the constraints that the implementation environment would impose
on the system. Thus, we can use the same model when we want to
implement our application on different platforms. That is why you
have not read much about VisualAge for C++ in this chapter. Before
we start implementing the application, we must further refine all of
the deliverables of the analysis phase to adapt them to the target plat-
form, which in our case is OS/2 Warp. We call this phase of refinement
object-oriented design (OOD).

82 VisualAge for C++ for OS/2

ners at Work
If you design something th,ct euen cL fool ccLn use, then only a fool wi,ll
use it.

- Murphy's Law

The design phase of software development begins when we start
thinking about the implementation specifications. We cannot say
exactly when the analysis phase ends and the design phase begins,
but there is a difference between analysis and design (Figure 32 and
Table 5). The analysis model is a conceptual picture of zofrcif the sys-
tem provides, whereas the design model is an abstraction of hozu the
system is really built. During design, we take a closer look at the
details so that we can implement the final solution.

Object-oriented design (OOD) encompasses both system design and
object design activities. System design in a client/server environment
is a vast and complex topic. Fortunately, the Visual Realty application
is a stand-alone software system, although it can generate export files
for uploading and downloading data to or from a server.

In this chapter we present the approach we used to design our applica-
tion with VisuaIAge for C++. The approach is adapted from VMT.

83

Figure 32. From Analysis to Design

During system design, we decompose the analysis object model into
subsystems. The decomposition process is comparable to the process of
partitioning the whole application into subapplications. System design
also includes the task of choosing a platform and enabling technology
as the basis for deriving a high-level architecture. In this chapter, we
limit the system design to describing the subsystems of our applica-
tion. Our main focus is on object design with VisualAge for C++.

Table 5. Deliverables of Analysis and Design

Analysis Deliverable Design Deliverable

Use cases, external (user's) view Use cases, internal (designer's) view

User interface specifications and Design prototype
prototype

Object model Extension to the object model to
include interface and service classes

Class dictionary Extension to the class dictionary to
include interface and service classes

CRC cards More detailed CRC cards are more
detailed, and new CRC cards
describe the classes required for the
implementation

Event-trace diagrams (external Event-trace diagrams (internal
view) view)

State-transition diagrams (global State-transition diagrams (detailed
level) level; only for objects with relevant

state changes)

84 VisualAge for C++ for OS/2

System Design

Legacy code is an issue when moving to the design phase, because we
must integrate it into our application. We must postpone all fine tun-
ing of overall system performance, because we tend to draw incorrect
conclusions if the implementation has not completed. Here the paral-
lel development of a design prototype can help measure run-time
behavior, so that we can change our database design as early as possi-
ble. The programming language might or might not support object-ori-
ented facilities such as inheritance and polymorphism. It is possible to
extend each programming language to an object-oriented language.
However, if this is a first project, the task is formidable, as coding
rules must be defined and functions that "simulate" object-orientation
must be implemented. In our case, however, we need not worry
because Visua]Age for C++ provides those functions.

System Design
You h,aue already sketch,ed, the thread of th,e plot, and__now you d,eftr:e
further subplot; that support th€ in_ain flow 9f action. _xpu st:.uc.ture th.e'ouerall cLctiion by parti{ironing it. Some authors partition t_heir noyels

i,rito parts, they further diui,de the parts _in_to chapte_rs, f end.sometimes
they-even subdivide the chapters ipto subchapters. Optionally,.you cqTn
as:ign a ti,tl,e to each chapter and, p_art,_ so that re.ad,ers c.aft leg:+rn the
stricture of the action by reading the chapter an_d _part titles.. You ?an
also regar-d, a chapter as eritirely sel_f-gontqined, b.eca.us.e the .acti.ons,
tching-place in i,t ire so closely related, that it cpn egivst. independ,ently. of
the b-oJh. Ind,eed, you can assign the u)riting of such ch,apters to another
cLuthor.

System design is the design of a high-level architecture for the pro-
posed solution. It includes a definition of the major system building
blocks and their high-level connectivity. It also includes an application
architecture that organizes the solution in subsystems.

Our main tasks during the system design stage are to:
I Partition the object model into subsystems
I Map subsystems to VisualAge for C++ subapplications
I Select the implementing platform
D Define data placement and data processing

Partition Object Model into Subsystems

We partition the system into two or more subsystems, mainly to
reduce complexity. You can compare a subsystem to a self-contained
chapter of your novel; we also want our subsystem to be self-con-
tained. We choose objects for a subsystem that are closely coupled by
relationships or that form a functional unit (for example, if one object

Chapter 4. Designers at Work 85

System Design

is a collaborator for a function of another object). We can read the
functional units from the CRC cards, and we can see the relationships
when we look at the object model. As a rule of thumb, we can assign
the use cases belonging to one actor to one subsystem. If one actor can
invoke several use cases, we then focus on the objects. If some of the
use cases use a certain group of objects, we build a subsystem includ-
ing that group of objects. The objects inside a subsystem are only
loosely related to objects outside the subsystem. If some single objects
cannot be grouped into any subsystem-objects that are responsible
for exception handling, for example-we treat each of them as a spe-
cial subsystem.

There is one difference when we compare a subsystem to a self-con-
tained chapter in your novel: Some subsystems are regarded as an
extension of the base system and are sold separately as service packs.
Ygur readers uJould, be lJery unhappy if they h,ad to pay eutra for the I,ast
chapter of your novel ,....

We can split the effort of system design by developing and implement-
ing subsystems simultaneously with more than one team. As the
objects in different subsystems are only loosely coupled, the message
flow between subsystems is much simpler than the message flow
within subsystems, and the teams can thus work rather indepen-
dently. We can further partition the subsystems into more low-level
subsystems.

We partition the Visual Realty application into three major sub-
systems:

Property: This subsystem provides agents with all of the
functions they need to manage their property
portfolios.

Buyer: This subsystem provides agents with all of the
functions they need to manage their buyer
portfolios.

Sale transaction: This subsystem provides agents with all of the
functions they need to manage the sale pro-
cess.

Map Subsystems to VisualAge 1:or C++ Subapplications

With VisualAge for C++ we can make a relatively smooth transition
from subsystems to subapplications, as the application design tool of
VisualAge for C++, the Visual Builder, isolates subapplications in so-
called Visual Builder Binary (VBB) files.

86 VisualAge for C++ for OS/2

System Design

We can consider the following VBB files:

I VRPROP.VBB contains the parts required for the property sub-
system.

I VRBUY.VBB contains the parts required for the buyer subsystem.
I VRSALE.VBB contains the parts required for the sale transaction

subsystem.
I VRSERV.VBB contains the parts required to perform basic services

(upload and download data)
I VRCOMM.VBB contains common parts (for example, 1ogon view

and address view) that can be reused several times in the applica-
tion.

Select the lmplementing Platform

The analysis model is the ideal model, but our computer world is not
ideal. The components of the actual implementation environment,
namely, the programming language, operating system, database man-
agement system (DBMS), networking system, and other software
packages, impose some constraints. The design model must include
these components, but the goal is to make our problem domain objects
as independent of the platform particulars as possible, particularly if
we intend to implement our product on different platforms. Rather, we
create new service objects that serve as an intermediate layer between
the functions of the actual platform and our business objects.

An example is database access: If a function of a business object
directly invokes an SQL query, we will have to change and recompile
the object when we (or the customer) bring in another DBMS. You
could justly retort that a new DBMS always involves a change,
whether it concerns the business object or the service object, so we
would have to expend the same amount of effort no matter which
object we change. We agree, for the current implementation. If we
think of reusability and maintenance, however, we prefer the solution
with the intermediate object, because then our core objects, which deal
with the business logic, are independent of the underlying DBMS. If
we are lucky and land a new customer who needs the same applica-
tion, we can stay cool and ask: "What would you like, D82 or Poet?"
Even if the customer wants a brand-new, fuzzy-logic-oriented, PCM-
CIA-based, 128-bit DBMS, we will still deliver the same core objects.
(All we have to do is buy a bigger coffeemaker and create an incentive
for our programmers, who will have the dubious pleasure of imple-
menting the new service object.)

To make the application workable and manageable, we must select the
system platform or infrastructure. In our case, the implementing plat-
form is assumed to be a D82/2 local area network (LAN) environment.

Chapter 4. Designers at Work 87

System Design

The enabling technology and component selections for our system
building blocks were predetermined by both the available supporting
platform for VisualAge for C++ when we wrote this book and the needs
of our application (Figure 33).

Buyer Property Sale
Management Management Management

Common Data Access Application

VisualAge for C++ for OS/2

Presentation Manager

UPM/2 L, 82/2
LANServer

MMPM/2

OS/2 Operating System

Visual Fealty
Business
Application

Open Class
Libraries

Workstation
Operating
Environment

Figure 33. Visual Realty System Platform

The Visual Realty application is simple. It uses a stand-alone data-
base so that the agent can carry his or her laptop when visiting cus-
tomers. The agent can update the local database and generate export
files. Back at the agency, the agent can import the files to the central
database.

Define Data placement and Data Processing

The initial decisions for data placement and data processing are made
during system design and can be reassessed during the object design
stage. These decisions would include whether the data should be
stored in a local or remote database.

Refine Contexts

You haue already decided when and, where your story tahes place. Now
you must descri,be the context more distinctly, like a camera that zooms
i,n on cL scene. You plcLce your characters in a period setting or d,escr{be
the particulars of the lcLndscape. Now i,s the time to consider how you

88 VisualAge for C++ for OS/2

Object Design

want to embell,ish your novel. Do you u)cl,nt to descri,be a su,nset, or per-
haps a rebellion of gnomes? Remember that the environment you
descri,be infouences the personality, behouior; and speech of your char-
acters. A:ll elements mu,st fit together well so that your readers can
inmerse themselves in your fictional ujorld.

Object Design
The object design phase includes a refinement and a fleshing out of
the object details. Of course, the level of detail for the object descrip-
tions can vary.

Our main tasks during the object design phase are to:
I Design the solution domain classes
I Design the nonvisual parts
I Design the GUI with the visual parts
I Design the persistent data

Design the Solution Domain classes

The set of classes that make up an application is usually much larger
than the set of classes identified during the analysis phase. As we con-
sider the circumstances of the implementation environment, we find
objects that we must include in our model. New objects emerge that
help implement the services or serve as an interface between the
application and the world outside the system, namely, the users or
connected devices. The initial set of semantic application classes iden-
tified in the analysis object model represents only the "core" business
behavior of the application. Other solution domain classes must be
designed to provide the concrete functions of the application. Interface
classes that represent the user interface and service classes that pro-
vide service functions such as data input validation or database access
are some examples of additional classes required for the implementa-
tion of the application.

We can compare the visibility of the analysis model with the top of an
iceberg, the main part of which is hidden under water. Our design
model reveals the hidden objects (Figure 34). To maintain traceability,
we translate every object into a part that we later implement, using
VisualAge for C++, in a separate source module. The solution domain
classes and services class are mapped to nonvisual parts, whereas
Interface classes are mapped to visual parts. The core is and should
remain the analysis model. The supporting objects are settled around
this core, providing the services that are necessary to embed the sys-
tern in the implementation environment.

Chapter 4. Designers at Work 89

Object Design

Figure 34. Design Model: Reveal Hidden Objects

The design of solution domain classes is iterative, as is everything else
in object-oriented development. For example, in the Visual Realty
application, we must have a service class to access the database and
control database access with a login procedure. This need does not
come out at the very first time of the design phase but after several
iterations. As you will see in Chapter 6, "Mapping Relational Tables
Using Data Access Builder," on page 127, this service is provided by
the IDatastore part.

In the detailed design object model, objects are represented as non-
visual or visual parts to facilitate a straightforward implementation
that uses the Composition Editor of visualAge for C++. To avoid com-
plexity, we do not draw all of the parts. However, we show them in the
different event-trace diagrams for the subsystem we describe.

Design the Nonvisual Parts

Once we have determined the required solution domain classes, we
are ready to flesh out their details and map them to nonvisual parts.
To help us in this task, we use the object model, the prototype inter-
face, and the event-trace diagrams for the use case scenarios for each
subsystem. The user interfaces enable us to flesh out some base
attributes or derived attributes. The event-trace diagrams detail the
message flow between the objects and reveal missing objects or miss-
ing methods.

90 VisualAge for C++ for OS/2

Object Design

Let us take our CRC cards containing the class attributes and respon-
sibilities. We complete the cards by adding the data types of the
attributes, naming the functions that carry out the responsibilities,
and defining the number, sequence, and data types of the parameters
of those functions.

As you will see in Chapter 6, "Mtipping Relational Tables Using Data
Access Builder," on page 127, the Visual Realty application is data-
centric. Thus, most of the nonvisual parts we use are mapped from
database tables. Nevertheless, when designing a nonvisual part, you
must pay attention to the following issues:
I Choosing the right data structures to support object relationships.

VisualAge for C++ provides you with a set of predefined data
structures (see Chapter 2). The choice is dictated by semantic con-
siderations. For example, an association with multiplicity 0 or 1
between class A and class 8 is represented by an attribute in each
part interface referencing class A or class 8. An association with
multiplicity 1-in between class A and class 8 is represented by an
attribute of type cozzecfjo77 of czc!ss 8 in class A and by an attribute
of type czclss A in class 8.

I Designing derived attribute policies. Indeed, it is often useful to
make a distinction between primitive attributes that cannot be
derived from other attributes and derived attributes that can be
derived from other attributes (for example, price per square foot is
an attribute that can be derived from price and size).

I Designing the data integrity policy. The programmer devotes a
great deal of time to building controls on user data. 'I\vo main
alternatives can be devised:
> Target objects expect that data is valid when passed to them

and the sender object is in charge of checking the data.
> Target objects verify data when they are asked to modify their

state.

As you will see in "Event Handler' on page 220, we adopt the first
alternative, hooking event handlers to some entry fields at the view
level.

Design the Gul with the Visual Parts

During the analysis stage, we have defined the analysis object model
with only nonvisual parts. In the design and detailed design phases,
we must define the visual parts.

We recommend a bottom-up approach to achieve part reusability. You
start at the bottom of the class hierarchy and build one or more ele-
mentary visual parts for each nonvisual part that we have created.
(Visual parts are also referred to as zJjeL4Js in this book.) You build the

Chapter 4. Designers at Work 91

Pefining the Design Model

elementary visual parts by using primitive GUI controls (such as
entry fields, list boxes, and push buttons). Then you can aggregate
these views to build more complex views, which represent the final
assembly of the final end-user interface.

Design the Persistent Data

We use Data Access Builder to map our database tables to nonvisual
parts. Because our application is data-centric, our Data Access Builder
parts play the role of the business nonvisual parts. However, some
nonvisual parts, such as Marketinglnfo, are built to hold some logic
that is relevant to the agency's business rules. The relationships
between the parts are simulated by means of joins with primary and
foreign keys. For example, the address information of a property is not
located in the property table; it is located in a separate table. When
the property information is accessed, the address information is
retrieved at the same time and displayed in the property view.

In the next section, we select the Property subsystem and explain how
to refine its design model to come up with a detailed model that is
ready to be implemented by use of visualAge for C++.

Refining the Design Model

You hnou) exactly u)h,en and u]here your story tches place and you know
your characters. Now th,e time has come to mche things h,appen. Rala-
tionships and encouri;±ers imbue your story u]ith decisive impulses. You
hcove already defined the relctionsh,ips i,n your outl,ine and fact files,
but they ci,re stccti,c. Now you must mche them dynamic. Encounters,
meetings, appoin±meuts, d,ctes, and coincidences, fictional or real,
enliven relationships and furth,er develop the action. They increase the
tension, but you can also use th,em to slow down th,e main action and
let your readers tche a feu) deep breaths.

One of the tasks th,ct ujth ch,allenge you the most is creating vivid and
cl,ear dialog. As i,n real life, not all is said th,ct is thought. Sometimes
you h,owe to let your reader read betu)een th,e lines.

Now the hard work starts for us: We must draw a detailed dynamic
model for all of our use cases, but now we must also consider all partic-
ipating objects and all objects that we may discover later. During the
analysis phase we described only those use cases that an actor directly
initiates, and we reflected only the business objects. Now we must also
consider those use cases that are created "under the covers" and
reflect the objects that are invisible to the user. We can see on the
event-trace diagrams how the objects interact with one another. Ini-
tially, actors create events (according to Jacobson, Oky.ec£-Orze7?fed

92 VisualAge for C++ for OS/2

Be fining the Design Model

Software Engineering. A Use Case Dri,Den ALpproach, by I. Jacchson ch
al. p. 147, they "send stimuli") when they give any input. These events
are partially handled by the interface objects, as the actor should
receive an immediate feedback, but the interface object passes the
event to another object that is responsible for carrying out the actor's
request. Events, in fact, are function calls to other objects, which in
turn should provide information or carry out a service. We must define
the names and parameters of every event with meaningful names to
facilitate maintenance and reuse.

Each use case has a normal course and several alternative courses
that handle exceptions. Sometimes we find abstract use cases that are
comparable to subprocedures. (An abstract use case is a sequence of
operations that can be reused in one or more "real" use cases.) When
we build a big application, several designers develop the dynamic
model simultaneously. Thus, we must homogenize the model (that is,
we must find the smallest number of methods, detect methods with
common behavior, and give them a unique name.)

After we have developed all event-trace diagrams for one object, we
can start implementing the object. The diagrams give a complete pic-
ture of the object's interfaces. We also can draw each object's state-
transition diagram to show which method has an impact on the
object's state. As a rule of thumb, we can say that each object maps to
one class. If the object plays several roles, however, we should map it
to several classes. Object-oriented languages help us to seamlessly
translate the dynamic model into source code. As the translation can
be done in a straightforward manner, a code generator can be applied
here. Humans must still make the final refinements.

From the different views we have sketched in the user interface proto-
typing phase (see Figure 28 on page 71, for example), we can envision
the visual parts we need to implement all of the use cases. Further-
more, from the event-trace diagrams we can chain these different
views and discover some nonvisual parts that we need to complete the
process. For example, to search a property by its characteristics, users
access a primary window where they can choose the search option.
This option brings them to a secondary window where they select sev-
eral characteristics of "their" property. Then they launch the search.
The result is displayed by means of a table.

For our purposes, we consider the three main functions of the property
subsystem: property retrieving, property creation, and property
update.

As previously mentioned, refining the design object model is an itera-
tive process that involves the existing use cases, their corresponding
event-trace diagr.ams, and the design object model itself. On the basis
of the part available in the implementation tool and the detailed

Chapter 4. Designers at Work 93

Be fining the Design Model

description of each use case, we evaluate the parts required to com-
plete our process. We apply this refinement process for each event-
trace diagram and then modify the design object model.

In the sections that follow, we illustrate the refinement process for the
property retrieving, property creation, and property update use cases.
We start from a first cut of the property subsystem object model
(Figure 35), which is based on the following assumptions:
I The property information is divided into separate objects that are

stored in separate relational tables.
I A Property object is represented on the screen as a notebook.
I A distinctive object, PropertyManager, is required to manage a set

of properties. In effect, requirement specifications 5 and 6 (see
"Requirement Specifications" on page 64) imply the need for a

property set structure that must be managed somehow.
I A set of properties is shown to the user as a container control that

holds one or several container objects. A container object is a par-
ticular view of a Property object (the other view is the notebook
view).

Figure 35. Design Object Model of the Property Subsystem: First Cut

The links between the different objects represent association relation-
ships. The hcLs link expresses an association between two objects. For
example, the Property and Address objects are associated to express
that a Property hcls an Address. The link between PropertyManager
and Property indicates that a PropertyManager manages one-to-many
properties.

94 VisualAge for C++ for OS/2

Be fining the Design Model

Refining the Property Retrieving Scenario

The use case corresponding to a property search is expressed as fol-
lows:

When the user selects the search opti.on, he or she I.s prompted to
enter hi.s or her cri.teria search, such as pri.ce range, si.ze
range, area, number of bedrooms, number of bathrooms, number of
stori.es, type of cooling, and type of heati.ng. Once the user
provi.des the i.nformati.on, the user acti.vates the search. The
properti.es that match the cri.teri.a are di.splayed i.n tabular form.

In this use case scenario, we feel the need for some extra views to com-
plete the process. We can then refine the first event-trace diagram,
adding three views that help the user navigate through the applica-
tion:

I PropertyManagementview is a primary window that enables
users to choose the search option.

I Propertysearchparameterview is a secondary window that
enables users to enter their search criteria.

I PropertysearchResultview is a window that displays a table of
properties that match the users' criteria.

At the detailed design stage, we must take into account the presenta-
tion characteristics of the target platform. In our case, the application
runs on a stand-alone system under OS/2. Taking advantage of the
PM controls, we use the detailed view representation of a container to
display the properties as a table.

When the user selects the seczrch option from PropertyManagement-
View, a secondary window is created: Propertysearchparameterview
(Figure 36). This secondary window prompts the user to enter his or
her criteria. The criteria are sent as a clause to PropertysearchResult-
View. This clause is used by PropertyManager to extract the matching
properties. Then, PropertyManager refreshes the property container,
which is displayed by PropertysearchResultview. (Although not
shown on Figure 36, PropertyManager is embedded in Property-
SearchResultview to refresh the property container.) Thus, Property-
Searchparameterview and PropertysearchResultview are associated
by the clause. We can then refine the design object model by adding
these two classes, which are associated by a link attribute clause.

Chapter 4. Designers at Work 95

Pefining the Design Model

\ search

create

clause

search

_\ request information

\ information

search OK

refresh

Figure 36. Event-TTace Diagram for the Property Search Use Case

Furthermore, PropertyManagementview is the first panel that is dis-
played to the user when he or she accesses the Property subsystem. It
is linked to Propertysearchparameterview by a z4se relationship
called crecbfe. The create relationship states that the user can access
the Seczrch option from the PropertyManagementview. During the
user interface prototyping phase, it is decided that the user must close
the secondary window to access the primary window. (In PM it is said
that the secondary is shown modally.) For this reason, the relationship
clause is a one-to-one association.

Remember that in the first design stage we had to introduce the
PropertyManager class to manage a set of properties. The visual rep-
resentation of the class was a container control, and the representa-
tion of each property was a container object control.

In the second cut (Figure 37) we can aggregate the PropertyManager
and the Propertycnr classes to the PropertysearchResultview.
PropertyManager and Propertycnr are associated by the show rela-
tionship, which states that "Propertycnr shows the contents of the
Property list managed by PropertyManager." In addition, Propertycnr
holds one-to-many Propertycontainerobjects, each of which is associ-
ated with a Property instance by the 7LCLs link attribute.

96 VisualAge for C++ for OS/2

Be fining the Design Model

Figure 37. Design Object Model of the Property Subsystem: Second Cut

Refining the Property Creation Scenario

From PropertyManagementview, the agent can select the crecLfe
option to record a new property in the portfolio. To provide the agent
with a way of entering the property information, we must again define
one extra view, Propertycreateview. According to the first design
object model of the property subsystem, this view presents the prop-
erty information as a notebook. To reuse this notebook in other scenar-
ios (see "Refining the Property Update Scenario" on page 101), we
decide to make this notebook a separate view: Propertyview. Thus,
Propertycreateview contains Propertyview.

Chapter 4. Designers at Work 97

Be fining the Design Model

The user enters the property information in Propertyview and creates
the property in the portfolio by selecting the c7-ecLfe option of Property-
Createview (Figure 38). The create order is sent to the Property part
in charge of creating a new instance. It is also dispatched to the other
nonvisual parts to create an instance of each respective part:

I Address holds the location information.

I Marketinglnfo holds the marketing information, such as the price
per square foot or agent commission.

I PropertyLog holds two time stamps: one for the creation and one
for the last update. The time stamps are used during database
upload and download.

I MultiDoc holds the path name and file name of the video file.

invoke

create

initialize

initial'ze

initialize

initialize

initialize

1\
create -requestcha

cteristics info

1\\
characteris cs info

request add ess info

(\ address inf

\\ request des ription info\\
description i fo

\\ request vid info\\
video info

_\\` request mar etinginfo _\\ marketing in 0

\\ push create utton

add
add

dd(timestamp
add

add

create OK

Figure 38. Event-'Thace Diagram for the Property Creation Use Case

98 VisualAge for C++ for OS/2

Be fining the Design Model

For the third cut, we refine the design object model as follows
(Figure 39):
I Propertycreateview is added and linked to PropertyManagement-

View by a crecifes relationship.

I Propertyview is added and linked to the Propertycreateview by a
co7?£cbz7?me77£ relationship.

I Each notebook page is added as a separate view and aggregated
with Propertyview to make up the notebook.

The Propertyview notebook consists of five pages:

D Characteristics page displays the property characteristics (area,
size, price, bedrooms, bathrooms, stories, cooling and heating).

I Address page contains all of the location information about the
property.

D Description page describes the environment of the property.

I Video page allows the user to watch a video of the property.

I Marketing page displays some marketing information (for exam-
ple, price per square foot, sale commission) correlated with one
another.

Chapter 4. Designers at Work 99

Pefining the Design Model

Figure39 shows the four components of Property: Address,
Marketinglnfo, PropertyLog, and MultiDoc. Each component is associ-
ated with its corresponding page. The Characteristics page contains
the descriptive information contained by the Property object itself.
The user may ask for some adjustment in the user interface. For
example, one page is added for the description of the property,
although this attribute is part of the Property object. This is an imple-
mentation choice; it does not involve any changes to the model itself.

100

Figure 39. Design Object Model of the Property Subsystem: Third Cut

VisualAge for C++ for OS/2

Be fining the Design Model

Refining the Property Update Scenario

A property search results in a set of matching properties that are dis-
played in a container. The users can update a property of their choice
by selecting the apdcIfe option from the Propertycnr pop-up menu.
Thus, from PropertysearchResultview, users must access an extra
view, Propertyupdateview, which displays the property information
and enables them to update it if necessary. This view is based on the
Propertyview notebook, which we reuse (Figure 40).

\

I® S=

EB

co£:a3 •C|

cO a
C= CJ)a

>
Ei

COO)?EQ-co I> CJ)I Iia)C|
t:a)C| U)9a aa- -a)J±L t=a)C|

f=invokesearch
9a1Q-createormation ==clause

9a)OL0=search a-1har.) a<sendinf I= co= aIOL a-CL

\ request i\\
informati

+ property 0 tion Of p P-uP me

refresh

u

\\\ update inf (addres multido marketT

\\ push upd e button
updateupdate-

update OK

update
update ime sta)

update

Figure 40. Event-Trace Diagram for the Property Update Use Case

Chapter 4. Designers at Work 101

Pefining the Design Model

Propertycontainerobject is linked to Propertyupdateview by the cre-
c!£es association. Propertyupdateview holds Propertyview with the
hc}s containment relationship (Figure 41).

Figure 41. Design Object Model of the Property Subsystem: Fourth Cut

Refining Roles

The fcLct file that you heep for each character u)h,o plays cL major or
minor role in your nouel descri,bes hi,s or h,er mat,n trai,ts rather superft-
cially. Nouj, you must elcLborcte on those and add others to mche the
character come alive. Your reader should, al,most h,ear your characters
breathing. You reveal ujhcLt the ch,aracters thinh, descri,be their inner
monologs, cLnd depict i,n detail hou) they react to certain situations.
Your readers eventually come to hnoijj a certai,n character as ujetl as
anoth,er ch,aracter i,n your novel hnou)s him or her.

102 VisualAge for C++ for OS/2

Pefining the Design Model

AI th,i,s stage, you may introduce neu) characters to {llustrcte something
about the background of your protagonist. Because some of these new
characters play a supporting role only, you migh,t descri,be them shah-
lou)ly. Perh,aps they appear on a felJ) pages and are neuer meritioned
again. Other neu) characters may have a greater impact on the course
of the story, and, therefore you descri,be them more thorougJuly. For
excunple, if your not)el is about a basebcth trainer, you will descri,be how
he handles h,is team members, thus revealing hi,s ability or inability to
do his job. Suppose that one of the team members h,as some personal
problems, u)h,ich the trai,ner h,elps him resolve. The team member wi|h
problems has a more important role i,n your novel than his co_mrades
hove, so you describe his traits and experiences, but not those of the rest
of the team. In other words, you focus on characters who ccl,Try on th,e
pzof.

Chapter 4. Designers at Work 103

Be fining the Design Model

104 VisualAge for C++ for OS/2

Part 3

ng the
I Really

Application
By now you must be eager to see how to build the Visual Realty appli-
cation, so we give you the opportunity to do so in Part 3. Of course, we
do not fully detail the implementation of the entire application; rather,
we provide you with the keys to build it yourself.

To help you avoid some traps and pitfalls, we focus the development on
one subsystem, the Property subsystem, whose main functions are
creating, updating, deleting, and retrieving properties. All of those
functions take full advantage of the user interface and data access
parts that come with the IBM Open Class Library, shipped with
VisualAge for C++.

From the detailed design object model, each class is mapped to its cor-
responding part in Visual Builder: The views are mapped to visual
parts, and the business classes are mapped to nonvisual parts.

105

In the chapters that follow we show you how to build the subsystem in
five steps:

1. You set up your development environment and con figure the
Visual Realty application project, using WorkFrame/2.

2. You map relational tables to nonvisual parts, using Data Access
Builder. Later, you use these parts with Visual Builder to enable
persistency in the application. We provide you with hints and tips
that help you design a good mapping and use the classes necessary
to interact with the database.

3. You build the different visual parts that are required in the Prop-
erty subsystem, using Visual Builder. We show you how to build
simple visual parts by assembling primitive parts. (See "Using
Visual Builder" on page 27. The primitive parts are also called
co77£rozs.) Then we teach you how to reuse the simple parts to build
more complex composite parts. We provide you with some design
tips to improve the look and feel of your application and explain
how to use such complex controls as containers, notebooks, view-
ports, and multicell canvases.

4. Although most of the nonvisual parts are generated by Data
Access Builder and can be used as is, we show you how to design
your own nonvisual parts and take advantage of the notification
framework.

5. Using specific connections, you assemble all of your parts. We jus-
tify the need for variables, explain the consequences of using the
promoting part feature, and demonstrate how to take advantage of
dynamic memory allocation by means of the factory part.

106 VisualAge for C++ for OS/2

P
EnvironlTlent
In this chapter we present step-by-step instructions for creating and
con figuring your development environment with WorkFrame/2 and
Project Smarts. You will use the WorkFrame/2 Build facility to create
the appropriate make files and build the application's executable files
and libraries. WorkFrame/2 concepts are introduced in Chapter 2,"Getting Started in a VisualAge for C++ Environment," on page 19. If

you are not familiar with VisualAge for C++, you should read Chapter
2 first.

We assume that the VisualAge for C++ product as well as the Visual
Realty application are installed on your D: drive. For portability, all
file names have been built according to the file allocation table (FAT)
format. If you are running high-performance file system (HPFS) parti-
tions, you might want to change the file names to be more self-explan-
atory.

107

WorkFrame/2 Project Organization

Explanations given throughout this chapter assume that you have
some experience with the OS/2 environment. If you do not, use the
tutorial that accompanies the operating system.

Read this!

Throughout this chapter, we use the terms cZosses and
cbcfjo7is. We do not use them in the "traditional" sense of
classes from the object-oriented world or Visual Builder
actions. Rather, we use them in the special sense of work-
Frame/2 class and action definitions.

To con figure your development environment in the way
that is described in this chapter you must install the follow-
ing Corrective Service Diskettes (CSDs, see VisuaIAge for
C++ Support on page xxviii):

I CTV303 or higher for the Visual builder
I CTW301 or higher for the WorkFrame/2

In the design phase, we identified the different subsystems that make
up the Visual Realty application. If you apply the subsystem organiza-
tion of the application to the WorkFrame/2 environment, you can map
one subsystem to a project. In this chapter, we show you how to cus-
tomize the Property subsystem projects and subprojects.

The Property subsystem manages the creating, deleting, updating,
and retrieving properties in the Visual Realty application. Persistent
data of the Property subsystem is managed by D82/2 and accessed
from Visual Builder through the parts generated by Data Access
Builder

WorkFrame/2 Project Organization

To organize the development environment for the Property subsystem,
you first have to identify the project elements, that is, the data files
that are required to build the subsystem. The Property subsystem
data files can be classified as follows:

I Nonvisual and visual parts that are used to build the Property
subsystem; Visual Builder can generate those parts, or you can
create them

I Nonvisual parts created by Data Access Builder that are reused by
Visual Builder to manage the Property subsystem persistent data

I Visual Realty application common data, that is, the data that all
subsystems require, such as some dialog windows

I Service subsystem data

108 VisualAge for C++ for OS/2

File Organization

Once you have identified the project elements, you then have to iden-
tify the dependencies among those elements to determine the project
hierarchy. Clearly, the Visual Builder data depends on the Data Access
Builder data; you cannot compile the Visual Builder files if the Data
Access Builder files have not been generated. In such cases, you must
define the project Dacslib that manages the Data Access Builder parts
as a subproject of the project that manages the Visual Builder parts.
The Property subsystem also uses the Common and Service project
data, which implies that the Common and Service projects are to be
built first for the Property project to be completed.

Therefore, you must con figure the Property project such that it
accesses the header files and libraries generated in the Dacslib, Com-
mon and Service projects.

You also have to create a main project that manages the application
main() entry point, the Property subproject and a Help subpro].ect for
the application. The main project is called VISL4cLZ RecIzdy. Figure 42
depicts its project organization.

> Contains

Dacslib

Common

Service

Figure 42. Project Organization for the Visual Realty Application

File Organization

The project organization of the various subsystems does not necessar-
ily reflect the organization of the physical files managed by the Visual
Realty projects (see Figure 43). Do not forget that a single project can
manage several file locations. However, a project has a single working
directory, which is where it creates files.

Chapter 5. Setting Up the Development Environment 109

Creating and Customizing the DACSPPJ Project

We chose to develop our application on a single machine, but Work-
Frame/2 also handles files located on a LAN.

PROPERTY

DACSLIB

COMMON

Figure 43. Files Organization for the VisualRealty Application

In the sections that follow, we describe the steps to:

1. Create and customize a specific project-DACSPRJ-to create
libraries from the data generated by Data Access Builder

2. Create and customize the Help project
3. Create and customize the Common, Property, and Service projects,

as well as the Visual Realty main project with Project Smarts
4. Create and customize the DACS library (Dacslib) project for the

Property subsystem

Creating and Customizing the DACSPRJ Project
The DACSPRJ project is used to manage data created from Data Access
Builder. The strategy is to map the different D82 tables used in a sub-
system such as Property to C++ classes and group all of those classes
in a single library. Thus, you create a specific project, DACSPRJ, which
defines the basic actions and types to generate the library. Then, you
use the DACSPRJ pro].ect as a base for the Dacslib project, which han-
dles the Data Access Builder Property subsystem data.

110 VisualAge for C++ for OS/2

Creating and Customizing the DACSPPJ Project

The purpose of this step is not to reinvent the wheel but to reuse the
VisualAge for C++ default project. You simply make slight modifica-
tions to the default pro].ect to correctly build a Data Access Builder
DLL. In fact, when you use Data Access Builder, you are using both C
files (generated by the SQL precompiler) and C++ files (generated by
Data Access Builder itself). The default VisuaIAge for C++ project
defines a single action (Compile::C++ Compiler) for C and C++ files.
Because you have to specify different compilation flags for C and C++
files, you must create your own actions for compilation in the DAC-
SPRJ project.

The VisualAge for C++ default project is located on the D:\IBM-
CPP\MAINPRJ drive and is called VACPP. Modifications to VACPP will
affect any project you create from Project Smarts. Therefore, we rec-
ommend that you copy the VACPP project under a different name, such
as DACSPRJ, and modify the copy.

To copy the project, you can either:

I Open an OS/2 window, go to the D:\IBMCPP\MAINPRJ directory, type
copy VACPP DACSPRJ, and press Enter.
Or

I Double-click on the Drives folder, open the D:\IBMCPP\MAINPRJ
folder, select the VisualAge for C++ project, click on it with the
right mouse button, and select Copy. In the notebook that is now
opened, enter DACSPRJ in the Ivezu 7?cz77?e entry field and click on
Copy.
Technical lnformation!

tas The VACPP project is used by default as the
base project for any project created from
Project Smarts or the VisuaIAge for C++
project template. Other tools, such as the class
browser, use the VACPP project settings. For
example, if you want to edit a class definition
from the Browser, you start the default editor
defined in the VACPP project. If you want to
change the default project in your system, you
modify the value of the IWF.DEFAULT_PROJECT
environment variable (which was defined at
installation time in your CONFIG.SYS file).

Modify the DACSPRJ project as follows:

I Add a CPPSource file type to handle C++ files only, that is, files
with the *.cpp extension.

I Modify the existing CSource file type to handle C files, that is, files
with the *.c extension.

Chapter 5. Setting Up the Development Environment iEE

Creating and Customizing the DACSPBJ Project

I Add a C Compiler action that takes CSource file types as input.

I Modify the C++ Compiler action to take CPPSource file types as
input.

I Change the default SQLPREP flags.

I Change the default flags for the C Compiler and C++ Compiler
actions.

I Change the default linking flags.

I Set the correct Build options.

Adding the CPPSource File Type

You have to create a new source type specific to the C++ Compiler
action. This type is called CPPSource and corresponds to files with the
.cpp extension. Here are the steps to add the CPPSource type to the
DACSPRJ project tools setup:

1. Open the Drives folder, open the D:\IBMCPP\MAINPRJ folder, and
double-click on the DACSPRJ project to open it.

2. Open the DACSPRJ project tools setup, switch to the Types view,
and select ftypesiAdd.

3. Enter the following data:
Class FileMask
Name CPPSource
Filter *. cpp

Modifying the CSource File Type

In the VACPP project, the C++ Compiler action applies to the CSource
file type that groups files with the *.c and *.cpp file masks. You must
change the CSource file type to include *.c files only:

1. Open the DACSPRJ project tools setup and switch to the Types
view.

112 VisualAge for C++ for OS/2

Creating and Customizing the DACSPBJ Project

2. Select the CSource type and click with the right mouse button to
bring up a contextual menu. Choose the Change item. Modify the
CSource type description as follows:

Class FileMask
Name C Source
Filter *. c

3. Click on Change to commit the changes.

Adding the C Compiler Action

To create the C Compiler action, open the DACSPRJ project tools
setup and switch to the Action view. Because the C Compiler action is
very similar to the C++ Compiler action, you create it from the C++
Compiler action definition. Select the C++ Compiler action in the com-
pile action class, click on it with the right mouse button, and select
Copy. Then, complete the fields as shown in Figure 44 and click on
Copy.

Figure 44. Change Action Dialog Window: C Compiler

Modifying the C++ Compiler Action

You have to modify the settings of the C++ Compiler action to replace
the CSource source type with the CPPSource file type. Here are the
steps to modify the C++ Compiler action in the DACSPRJ project:

1. Open the DACSPRJ project tools setup and switch to the Actions
VIew.

2. Select the C++ Compiler action in the Compile class and select
Actions-Chcange....

3. Switch to the Types notebook page and replace the original
CSource source type with the CPPSource type.

Chapter 5. Setting Up the Development Environment 113

Creating and Customizing the DACSPBJ Project

Changing SOL Precompile Action Flags

Because Data Access Builder uses static SQL, the SQLPREP action
must be con figured to automatically generate bind files (.bnd files) as
well as the database packages. In other words, the re and ff flags
must be turned on:

1. Open the DACSPRJ project tools setup and switch to the Action
view.

2. Select the SQL Precompile action from the Compile class and click
on it with the right mouse button to bring up a contextual menu.
Select FZze Op£Zo7?sLicbci7tge from this menu.

3. In the SQLPREP option window, change the output option to Both
(AI ff).

4. Click on OK to commit the changes.

Changing Compilation and Linking Flags

The next step is to con figure the DACSPRJ project so that the compi-
lation and linkage are correctly set to generate a DLL from the Data
Access Builder data.

Flags for C Compiler Action

Open the DACSPRJ project and choose Op£Zo7?sico7xpjzeic Co77?-
pzzer from the Options menu bar item. In the C Compiler options dia-
log, you can graphically change most of the compiler options.

Set up the following options:

I Target type: DLL (on the Processing notebook page)
I Library selection: multithread (on the Object page)
I Library linkage: dynamic (on the Object page)

Flags for C++ Compiler Action

Open the DACSPRJ project and choose Opfjo7tsico7xpzzeic++ Co77?-
pzzer from the Options menu bar item. In the C++ Compiler options
dialog you can specify the following options:

I Target type: DLL (on the Processing notebook page)
I Library selection: multithread (on the Object page)
I Library linkage: dynamic (on t,he Object page)

Select the Do not generate library info toggle button (on the
Object/Details notebook subpage).

114 VisualAge for C++ for OS/2

Creating and Customizing the Visual Fealty Projects

Flags for Link Action

As you have specified not to generate the default libraries information
for the C++ Compiler action, you must specify the list of libraries that
are required at link time. To specify the list of libraries:

1. Open the linking options by selecting Opfjo77siLZ77fe.

2. Switch to the File Names page and enter the following list of libs
in the LzbrcL7-Zes fo z/se entry field:

cppooc3i.lib cppoov3i.lib sql_dyn.lib cppods3i.lib

You also have to specify that the generated library is using templates:

Switch to the Templates page, choose the Templates used toggle but-
ton, and then choose Compile::C++ Compiler action as the associ-
ated action.

Setting the Build Facility Options

The Build facility creates a make file for the project and tries to build
the project from it. To correctly generate the make file, you have to set
up the list of actions that the MakeMake facility uses. To con figure the
Build action, open the DACSPRJ project, select Op£Zo7?siBzzzzdi
Bztzzd IVor77?ciz, and select the following actions:

I Compile::C Compiler
I Compile::C++ Compiler
D Compile::SQL Precompile
I Link::Linker
I Lib::Import Lib

Creating and Customizing the Visual F3ealty Projects
The DACSPRJ project is now ready for use. The next step is to create
the main project, Visual Realty, and the various subsystem pro].ects.

Creating the Visual Realty Main and Subsystem Projects

The various projects for each subsystem are created from Project
Smarts and inherit from the default VisualAge for C++ project,
VACPP. To create the Property project:

1. Open the VisualAge for C++ folder.

2. Double-click on the Project Smarts icon.

Chapter 5. Setting Up the Development Environment 115

Creating and Customizing the Visual Bealty Projects

3. Select Visual Builder application from the available project list.
4. Click on Create.
5. In the dialog window, enter the following data:

Proj ect Property
Directory D : \VR\ PROPERTY
Folder Desktop (or your local desktop name)

Repeat steps 3 and 4 to create the Common, Service, and Visual
Realty projects with the following data:

Project Directory Folder
Common D : \VR\COMMON Desktop

Service D : \VR\SERVI CE Desktop

Visual Realty D : \VR Desktop

When you create a project with Project Smarts, such as a Visual Builder or a
IPF context-sensitive project, some sample files are created for you. You can
use those files as a startup point, or just delete them if they are not of any
use for your projects.

Project Smarts does not support the creation of composite project. You
therefore have to manually move the Service, Common, and Property
projects into their respective "parent" project. The Property project
has to be moved inside the Visual Realty project, while the Service and
Common projects must be moved inside the Property project. Do not
forget that projects are files and that defining project 8 as a subproject
of project A is equivalent to copying project 8 inside the project A
working directory.

To move the Service and Common projects inside the Property project:

1. Open the Property project

2. Select the Service and Common projects on your desktop (Ctrl +
left mouse button), drag and drop them in the client area of the
Property project.

You can also:

1. Select the Service and Common projects on your desktop (Ctrl +
left mouse button), click with the right mouse button on one of the
selected projects, and select Move. A notebook is now opened.

2. Switch to the Drives page and select D:\VR\PROPERTY.
3. Click on Move.

116 VisualAge for C++ for OS/2

Creating and Customizing the Visual Fealty Projects

If you now open the Visual Realty project, it should look similar to Fig-
ure 45.

I

•..,,`, I.ca

•:.....N-.-.-..+,+`I-i-i-i-i.X***`+`|`II++.i.EE.Dacs+-:`I.II,.I,-i-i-**X..-i-i-i---i,,.,.i..-~---.-....,-.--,.`---.-.-.-`-`x----......`-`------Lib

Ea Common

EE Serv ice ;ed

i€,i

'lgrffl¥#

.. -..;

Figure 45. The visual Realty project view

Creating the Help Project

The Help project is aimed at managing the context-sensitive help files
of the application. It is defined as a subproject of the Visual Realty
project. This project is also created from Project Smarts and inherits
from the default VisualAge for C++ project, VACPP. To create the Help
project:

1. Open the VisualAge for C++ folder.

2. Double-click on the Project Smarts icon.
3. Select IPF Context-Sensitive Help from the available project

list.

4. Click on Create.
5. In the dialog window, enter the following data:

Proj ect Help
Directory D : \VR\ HELP
Folder Desktop (or your local desktop name)

Chapter 5. Setting Up the Development Environment 117

Creating and Customizing the Visual Bealty Projects

Click on OK. A window pops up prompting you for some variables
names. You do not need to fill those variables in if you do not use the
default files generated for you by Project Smarts.

Once the Help project is on the desktop, you drag and drop it inside
the Visual Realty project. You can also:

1. Select the Help project on your desktop (left mouse button), click
with the right mouse button and select Move. A notebook is now
opened.

2. Switch to the Drives page and select D:\VR.
3. Click on Move.

Now you must change the settings of each project to change its target
name and make file name. For each project, open the project settings,
switch to the Target notebook page, and change the target name and
make file name as follows:

Project Target Name Make File
Property vrprop.dll vrprop.mak

Service vrserv.dll vrserv.mak

Common vrcomm.dll vrcomm.mak

Visual Realty vrmain.exe vrmain.mak

You are now ready to customize the Visual Realty projects.

Customizing the Visual Realty Main and Subsystem Projects

To correctly compile the Service, Property, and Visual Realty projects,
you must set the values of the LIB and INCLUDE environment vari-
ables for the compiler to find the correct header files and libraries. You
also can set various variables and flags to activate the trace facility in
the User Interface Class Library.

Modifying the LIB and INCLUDE Environment Variables

In the Visual Realty application, common parts are grouped in the
Common project. Both the Service and Property subsystems use those
common parts. You therefore must update the LIB and INCLUDE vari-
ables to include the path where common includes and libraries are

118 VisualAge for C++ for OS/2

Creating and Customizing the Visual Fealty Projects

located for the Property and Service projects. The Property subsystem
also uses the Service and Property Dacslib subsystems. The LIB and
INCLUDE variables must be completed accordingly.

Attention!

The new value of an environment variable is known only
zujfhjn fhe scope of the project. If your make file requires the
newly defined INCLUDE variable to correctly build the appli-
cation, you must start the make action from the Work-
Frame/2 project. If you start the make action from an oS/2
session window, the INCLUDE value is as defined in the oS/2
CONFIG.S¥S file.

To define the LIB and INCLUDE variables for the Property pro].ect:

1. Open the Property project tools setup, switch to the Variables
view, and select VcbrjcbbzesiAcZcZ.

2. Enter the following information to add the LIB variable and click
on Add.
Name LIB
String D:\VR\COMMON;D:\VR\SERVICE;D :\VR\DACS-

LIB;%L18%

The %L18% statement is equivalent to the current
value of the LIB variable, as defined in your CON-
FIG.SYS file.

Enter the following information to define the INCLUDE variable
and click on Add.
Name INC LUDE
String D:\VR\ COMMON;D:\VR\SERVICE;D :\VR\DACS-

LIB;97olNCLUDE%

Repeat steps 1 and 2 to define the LIB and INCLUDE variables for the
Visual Realty projects and define the HELP variable for the Help
project as follows:

Project Name Variable Name Variable String

Visual Realty LIB D : \VR\COMMON ; D : \VR\SERV I CE ; D : \VR\PROP-

ERTY ; D : \VR\DACSL I B ; %L 18%

Visual Realty INCLUDE D : \VR\COMMON ; D : \V R\S ERV I CE ; D : \VR\ PROP-

ERTY ; D : \V R\DACS L I B ; % I NC LUD E%

Visual Realty HELP D : \V R\H E LP ; %H ELP%

Chapter 5. Setting Up the Development Environment 119

Creating and Customizing the Visual Fealty Projects

Setting up the Subsystem Projects to Generate a DLL

Each Visual Realty subsystem is compiled and linked to generate a
DLL. Therefore, you must change the compile and linking flags and
then create a module definition file (.DEF) for each subsystem.

For each subsystem project (Common, Service, and Property), open
the project and choose Op£Zo7?sico7xpzze. Switch to the Processing
notebook page and do the following:

1. In the Processing Step group box, select the Perform compile
only radio button.

2. In the Target group box, select the DLL radio button.
3. Click on OK to commit the changes.

Then, for each subsystem, use your favorite editor to create a .DEF file
according to the following template, where vrxxxx is respectively,
vrprop, vrserv, and vrcomm for each subproject:

LIBRARY vrxxxxx INITINSTANCE

DESCRIPTION 'vrxxxxx dll'

PROTMODE

DATA MULTIPLE NONSHARED LOADONCALL

EXPORTS

Setting up the Linking Action Options

Select Opfjo7tsiLZ7tfe, switch to the File Names notebook page, and
modify the data for each project as follows:

ProjectName Libraries to Use Definition File Name
Common os2386.lib vrcomm.clef

Service os2386.lib vrserv.clef

Property os2386.libvrcomm.libvrdacs.libvrserv.lib vrprop.clef

Visual Realty os2386.libvrcomm.libvrdacs.libvrserv.libvrprop.lib (none)

Then, switch to the Templates page. Ensure that the Templates used
toggle button is checked and associated with the Compile::C++ Com-
piler action.

120 VisualAge for C++ for OS/2

Creating and Customizing the Visual Fealty Projects

Setting up the Build Facility Options

To correctly generate the make file, you have to set up the list of
actions that the MakeMake facility uses. To con figure the Build action,
open each of the Service, Common, and Property pro].ects, select
Op£Zo7?siBz/ZzdiBL4Zzd IVo7.77icIZ, and select the following actions:

I Compile::C++ Compiler
I Link::Linker
I Lib::Import Lib (except for the Visual Realty project, whose target

is an executable file, not a library).

For the Visual Realty project, select the following actions:
I Bind::Resource Bind
I Compile::C++ Compiler
I Compile::Resource Precompile
I Compile::Resource Compiler
I Link::Linker

Repeat these two steps for the Bz4ZzdiRebz/Zzd AZZ option.

Setting up a Project for Trace Support

If you want to take advantage of the trace facility in the user interface
class library, follow these steps:

1. Compile your code with the IC_TRACE_DEVELOP preprocessor
macro. You can set this macro from the Build Smarts facility:
a. Open Build Smarts and select the Development toggle but-

ton
b. In the Def£7?e entry field, enter IC_TRACE_DEVELOP.

2. Set the ICLUI TRACE and ICLUI TRACETO environment variables
to enable the trace functions. The ICLUI TRACE variable enables
or disables the trace according to its value (ON/OFF), and the
ICLUI TRACETO variable enables you to redirect the trace output
to a file or a standard output. Redirect the output to STDOUT so
that you can see it from the project monitor window.
To set the ICLUI TRACE and ICLUI TRACETO variables you can either:

• Add the following statements to your CONFIG.SYS file:

SET ICLUI TRACE=ON

SET ICLUI TRACETO=STDOUT

Or

Chapter 5. Setting Up the Development Environment 121

Creating and Customizing the Visual Fealty Projects

• Add the variables in the project tools setup:

Open the project tools setup and switch to the Variables view.
Enter the following information to define the ICLUI TRACE
variable and click on Add:
Name ICLUI TRACE
String ON
Proceed in the same way to define the ICLUI TRACETO vari-
able:

Name ICLUI TRACETO
String STD OUT

Setting up a Project for Visual Builder

After you have used Visual Builder for a while, you might find it
annoying to have to manually load the necessary VBB files for your
application. Do not despair, however. Visual Builder provides a facility
for automatically loading the correct VBBs when you start the tool. AIl
you have to do is create a VBLOAD.DAT file, using your favorite edi-
tor. A VBLOAD.DAT file is a flat file in which you list the VBB files
you want to load at startup. The VBLOAD.DAT file for the property
subsystem looks like this:

D : \ I BMCPP\DDE4VB\VBDAX . VBB

D : \ I BMCPP\DDE4VB\VBMM . VBB

D : \ I BMCPP\DDE4VB\VBSAMPLE . VBB

D : \VR\ PROPERTY\VRPROP . VBB

D : \VR\COMMON\VRCOMM . VBB

D : \VR\SERVI CE\VRSERV . VBB

You must specify the full path name for each VBB. Note that you do
not have to specify the VBBASE.VBB file because Visual Builder
always loads it at startup.

For each Visual Realty project, create a VBLOAD.DAT file as follows:

Project Name VBLOAD.DAT File Contents

Service D : \ I BMCPP\DDE4VB\VBDAX . VBB

D : \ I BMC PP\DDE4VB\VBSAMP LE . VBB

D : \VR\COMMON \V RCOMM . V BB

D : \VR\COMMON\KBDHDR . VBB

D : \VR\S ERV ICE\VRSERV . VBB

Common D : \ I BMC PP\ DD E4VB\VBSAMP LE . V BB

D : \ VR\COMMON \V RCOMM . V BB

122 VisualAge for C++ for OS/2

Creating and Customizing the Dacslib Project

Project Name VBLOAD.DAT File Contents

Visual Realty D : \ I BMCPP\DDE4VB\VBDAX . VBB

D : \ I BMCPP\DDE4VB\VBSAMPLE . VBB

D : \VR\COMMON \V RCOMM . V BB

D : \VR\S ERV ICE\VRSERV . VBB

D : \VR\S ERV I CE\VRPROP . VBB

D : \VR\VRMAIN . VBB

Creating and Customizing the Dacslib Project
To create the DACS library (Dacslib) project for the Property project,
open the Templates folder and drop the WorkFrame 3.0 Project tem-
plate on your OS/2 desktop. Open the settings notebook for this new
project and provide the following:
I Target page

> TCLrge£.. vrdacs.dll. Each project must have a single target,
such as an EXE or a DLL file.

> j\4lcLfae f£Ze.. vrdacs.mak. The name of the file used by the
nmake tool to build the target.

I Location page
> Soz4rce Dzrecforzes for projecf f£Zes D:\VR\DACSLIB. If you

specify several source directories, you must indicate which
directory is the working directory. The working directory is
used to store any files created in the project.

I Inheritance page
> J77herzf fro77? DACSPRJ. To specify from which pro].ect you

inherit, click on the Add push button and use the file dialog
window. If you have moved the DACSPRJ project to your desk-
top directory, the path which locates your project is C : \DESKTOP
(assuming OS/2 is installed on your C disk).

I General page
Change the name of the project to Dacslib.

After you have provided the above information, move the Dacslib
pro].ect inside the Property subsystem:

1. Select the Dacslib project and click on it with the right mouse but-
ton to get a contextual menu.

2. Select Move.

3. Switch to the Drives notebook page and select D:\VR\PROP-
ERTY.

Chapter 5. Setting Up the Development Environment 123

Naming Conventions

4. Click on Move.
Technical Information!

i`

If you inherit from multiple projects, you must
use the Promote and Demote functions to man-
age project precedence. The rule is that the lat-
est project in the inheritance list prevails over
all other projects if there is a conflict, for
example, if several projects define the same
action but with different options.

Setting Up the Linking Flags

You have to specify the name of the .DEF file used by the linker. Open
the link options dialog, and in the Defz77Zfjo77 FZze IVczme field, enter
vrdacs.clef.

Click on OK to commit the changes.

Creating a Library Definition File

Once the code is generated from Data Access Builder, you have to
erase the various .DEF files and create a unique DEF file. Use your
favorite editor to create the VRDACS.DEF file in the D:\VR\DACSLIB
directory, with the following contents:

LIBRARY vrdacs INITINSTANCE

DESCRIPTION 'vrdacs dll'

PROTMODE

DATA MULTIPLE NONSHARED LOADONCALL

EXPORTS

For details on DEF files, refer to the C/C++ Progrci77t77?Z7tg Gz/jcze.

Naming Conventions

We used the following name conventions throughout the development
of the Visual Realty application (see Appendix D, "Class Dictionary,"
on page 353):

1. All file names are built according to the FAT format (eight letters
for the file name, three letters for the file extension).

2. All file names are built according to the VRSXXXX format,
where:

124 VisualAge for C++ for OS/2

Pun-time Considerations

• VR is an invariant for Visual Realty
• S is the subsystem name

- 8, for the Buyer subsystem
- P, for the Property subsystem
- T, for the Sales 'Thansaction subsystem
- C, for the Common subsystem
- S, for the Service subsystem

• XXX identifies the file contents.

F]unltime Considerations

For the application to run, the necessary DLLs must be located in one
of the directories listed in the LIBPATH variable. We can therefore cre-
ate a D:\VR\DLL directory where all of the Visual Realty application
DLLs will be moved. This directory must be added to the LIBPATH vari-
able in the CONFIG.SYS file.

Chapter 5. Setting Up the Development Environment 125

Bun-time Considerations

126 VisualAge for C++ for OS/2

onal lTables
LJsing I)ata Access
Builcler
Data Access Builder lets you create object-oriented applications
quickly and reliably by generating the parts that you need to access
your relational tables. For each part, Data Access Builder generates
all of the required methods (add, update, delete, and retrieve) as well
as the embedded SQL code.

You can use the generated parts directly in your programs or import
them into Visual Builder. If you use Visual Builder to connect the
parts to other parts, you can quickly create applications that effi-
ciently access your databases.

127

Some of the key features of Data Access Builder are:
I Table to parts mapping: You can create new parts, using your

existing database tables. You can create one part, or many parts,
from any table. Both C++ and SOM IDL code are supported.

I Quick and custom mapping: The quick map feature lets you do a
column-to-attribute mapping. By using inheritance, you can cus-
tomize their classes to suit your needs.

I Visual display of mappings: Data Access Builder displays the map-
ping of your database tables to the object classes. This display sup-
ports visual editing.

I Connection and transaction services: These services are provided
for connection and disconnection from your databases. In addition,
commit and rollback operations are provided to handle transaction
services.

I DATABASE 2 0S/2 support: You can use D82/2 in a stand-alone
environment or through the D82 Client Application Enabler.

In the design object model (Figure 41 on page 102), praperdy is
described by the following classes and their relationships:

Property Holds the general information of property:
Property registration identifier
Size
Number of stories
Number of bathrooms
Number of bedrooms
Cooling type
Heating type
Description

Address Holds the location information for the property:
Street
City
Area
State
Zip code

Marketinglnfo Holds the marketing information for the property:
Price
Days on the market (elapsed time between the
last update and the creation date)
Commission rate (agent commission rate)
Down payment rate (buyer payment rate)

128 VisualAge for C++ for OS/2

Mapping Tables to Parts

PropertyLog Holds the logging information:
Creation time stamp
Last update
Status (available, pending, or sold)

MultiDoc Holds the multimedia information for the prop-
erty:

Type (bitmap or video; only the video features
are implemented in the sample application)
File name

To store this property information, we define the following five tables
(see Appendix C, "Database Definition," on page 347 for details):

I PROPERTY
a PROPERTY ADDRESS
a MARKETIN-G INFO
I PROPERTY L-OG
I MULTI DOC

The relationships between Property and the other classes are repre-
sented by a foreign key in each table. In addition, we create two views:
DPROPADLOG is built by joining the PROPERTY,

PROPERT+ADDRESS, MARKETING_INFO and PROPERTY_LOG
tables on PROPERTY ID and ADDRESS ID. It is used to simulta-
neously display, in ; container, the i=formation from the four
tables (see "Using a Container" on page 182).

I LIST_AREA is built by joining the PROPERTY_ADDRESS and
PROPERTY_LOG tables and contains, in alphabetic order, the dis-
tinct areas of properties that have the "available" status.

Mapping Tables to Parts
You can start Data Access Builder in three ways:

I Click on the appropriate icon in the tools folder.
I Start the product from an OS/2 session.
I Start the product from WorkFrame/2.

With the first method, the source files are generated in the directory
that is specified in the notebook settings of the program. By default,
the files are produced in the D:\IBMCPP\WORKING directory (assuming
you have installed VisualAge for C++ on your D drive). If you want to
generate your code in the D: \REAL directory (assuming you have cre-
ated a \REAL directory to hold all files related to your application),
open the settings of Data Access Builder and set the working directory
to D : \REAL.

Chapter 6. Mapping Belational Tables Using Data Access Builder 129

Mapping Tables to Parts

With the second method, the code is generated in the directory from
which you start Data Access Builder. Therefore, if you want to gener-
ate your code in D: \REAL, simply change to the D: \REAL directory and
type the 1. csdata command to start Data Access Builder.

You use the third method to start Data Access Builder. In Chapter 5,
"Setting Up the Development Environment," on page 107, you defined
a Dacslib project for the Property subsystem. From Dacslib you can
start Data Access Builder in four ways:
I Select the Dcbfclbclse option from the Project pull-down menu.
I Select the DCIfclbclse option from the project's pop-up menu.
I Use the accelerator keys: Ctrl+Shift+A.
I Double-click on a Data Access Builder session file (extension

•DAI).

Data Access Builder generates the files in the directory that you speci-
fied on the Location page of the Dacslib project settings notebook, that
is, D:\VR\DACSLIB.

Open the DACS library project and start Data Access Builder. The
startup window presents you with the following selections:

Create classes To create new classes from relational tables

Open To open a Data Access Builder file and resume the
work of a saved session

Cancel To quit Data Access Builder

Help To access the online help

To create a mapping from scratch, click on the Create Classes... push
button. When you select Crec}£e CZc!sses ..., Data Access Builder
accesses your database directory and presents a list of all database
names cataloged on your machine (see Figure 46). From the list, you
can select the database with which you want to work.

130 VisualAge for C++ for OS/2

Mapping Tables to Parts

Figure 46. Data Access Builder Create Classes Window

Select the REAL database and click on Connect.

When you click on Co7t77ec£, Data Access Builder tries to connect to the
selected database. If Database Manager is not already running, it is
started. If you are not logged on, you are asked to give the userid and
password of the database creator (in our case, the userid is USERID,
and the password is PASSWORD).

Once the database connection is established, Data Access Builder lists
the tables and views, prefixed with USERID (Figure 46). Click on each
table or view you want to map to a part. In our case, select only the
tables and views related to the Property subsystem:

I USERID.LIST AREA
I USERID.MAR-KETING INFO
I USERID.MULTI DOC
D USERID.PROPE-RTY
I USERID.PROPERTY ADDRESS
I USERID.PROPERTY-LOG
I USERID.PROP AD L-OG

Then, click on Create classes to get to the main window, which shows
the mapping of each table on the free-form surface (Figure 47).

Chapter 6. Mapping Belational Tables Using Data Access Builder 131

Mapping Tables to Parts

Figure 47. Data Access Builder Main window

To access the pop-up menu of each table, click on a table with the right
mouse button or, as a shortcut, double-click with the left mouse but-
ton.

Before you generate the code for each part, you can check the associ-
ated file names. For each part, the following files are generated:
I *.hpp, header for the parts
I *.cpp, code for the parts
I *.sqc, embedded SQL to access the table
I *.vbe, import file for Visual Builder
I *.clef, definition file for creating the DLL
I *.mak, make file for building the DLL and LIB files

The make file produces a DLL and the import library required to
access the database. The DLL provides the code to access the rela-
tional tables. The import library is used during link-editing to resolve
the external references for the database access.

We strongly recommend that you use a file stem length of no more
than seven characters so that you can manipulate your source code
with either HPFS or the FAT file system. You can modify the file stem
with the following names:

I ListArev for LIST AREA
I Marklnfv for MAR-RETING INFO
I Multidov for MULTI DOC
D Propertv for PROPEETY

VisualAge for C++ for OS/2

Mapping Tables to Parts

I PropAddv for PROPERTY_ADDRESS
I PropLogv for PROPERTY_LOG
I PropALoV for PROP_AD_LOG

If you use Data Access Builder to generate one target for each table
mapping, make sure that the file names are unique for each target
generated. In our example, if you generate one DLL for each class, you
will avoid confusing Property, Property_address, and Property_log.
Each of them would generate a makefile that would produce the same
targets: Propertv.dll and Propertv.lib. In addition, the maximum
length for a database package is eight characters in D82/2 1.2. Thus,
you should avoid file names with more than eight characters.

Notice that the C++ Tcirge£ Lzbrclry check box is not checked. Because
Data Access Builder is started from the WorkFrame/2 environment,
the target library should be set at the project level on the Target page
of the pro].ect settings notebook.

The DCLfcl jde7i£Z/£er (Figure 48) is used to identify a row. Before the
update, delete, and retrieve operations, the unique values of the data
identifiers must be set to locate the row in the relational table. When
the Dczfc[Zde77£j/Zer check box of an attribute is selected, that attribute
is used to identify a row in the table. By default, each primary key is
an identifier. If the table does not have a primary key, the first
attribute is selected as the default data identifier. You must ensure
that the attribute contains unique values. If the values in a data iden-
tifier identify more than one row, errors occur during the retrieve
operation, and multiple rows are affected during the update and
delete operations. Table 61ists the identifiers for each relational table.

Chapter 6. Mapping Pelational Tables Using Data Access Builder 133

Mapping Tables to Parts

Figure 48. Data Access Builder Page Attribute of the Settings Notebook

Table 6. Relational Table Identifiers

Table Identifier
LIST AREA AREA

MARKETING INFO PROPERTY ID-
MULTI DOC MULTIDOC ID_

PROPERTY PROPERTY ID

PROPERTY ADDRESS ADDRESS ID

PROPERTY LOG PROPERTY ID

PROP AD LOG PROPERTY ID

Select GeJ®ercEfe on the pop-up menu of each part to generate the C++
code in the Dacslib pro].ect folder (Figure 49).

134 VisualAge for C++ for OS/2

Parts Produced

Figure 49. Pop-up Menu Generate Option

Notice that, after the source code has been generated for a part, an
orange jigsaw puzzle icon is added underneath the blue ball icon (Fig-
ure 49). Later, these icons remind you that the code has already been
generated. Close Data Access Builder and save the session under the
REAL.DAX file name.

You can now build the library and the corresponding DLL, using the
Build option from your project folder (Make sure D82 is started before
building the application to prevent the SQL precompile action from
failing.) Notice that you can also generate the library from the Bz/Zzd
option of the Property project because the Dacslib Project is embedded
in the Property project.

Parts Produced
When you map a table, T, to a part, two parts are generated: the T part
and the TManager part, also called the manager part.

The T part is derived from the Ipersistentobject class and represents
a row of the T table. Using the T part, you can access the information
of the table, because each column is mapped to a corresponding part
attribute (Data Access Builder handles type conversion between
D82/2 and C++). Data Access Builder generates a method to get and
set the value of each attribute as well as check or set the attributes to
NULL (if allowed for that column). Those attributes are enabled for

Chapter 6. Mapping Pelational Tables Using Data Access Builder 135

Using Data Access Builder Parts with Visual Builder

notification (see Chapter 10, "If You Want to Know More about Visual
Builder ..., " on page 323) and return Istring() representations. In this
way, attributes can be connected to other visual parts, with each
attribute reflecting the change to the other parts. In addition, the T
part supports the actions you usually apply on a table row: add, delete,
update, and retrieve.

These database access methods use static SQL for efficient access.
Before using these methods, you must indicate the attribute you will
use to retrieve the entire row (see Figure 48 on page 134 and Table 6
on page 134) and then check the Data identifier check box. You can
have several data identifiers.

The TManager part is derived from IPOManager and accesses multi-
ple rows of data. Using this part, you can retrieve several rows of the
table. Use the Refresh method to retrieve all rows of the table, and use
the Select method to retrieve a selected set of rows according to an
SQL clause.

The rows are maintained through an attribute of type IVse-
quence<T*>*, called iltems. As you will see in the section below, the
iltems attribute is used through attribute-to-attribute connections
with other visual parts, such as a container or a list box, to display the
contents of a set of rows.

In the current release of Data Access Builder, you must only use the
Select method of the manager part to limit the number of rows that
are read from a table and added to the IVsequence of the Manager
part.

All SQL access is executed through the exception handler framework.
In this way, exceptions are thrown by the parts whenever an error
occurs, and your application can catch the exceptions to react accord-
ingly.

Using Data Access Builder Parts with Visual Builder

For each mapping, Data Access Builder produces a Visual Builder
export file (VBE extension), which is used to import the parts defini-
tion in Visual Builder.

In the Visual Builder main window select JJxporf pclr£ £Jlforma-
££oJ®... from the Fjze menu item to import all of your VBE files. For
each VBE file, a VBB file that consists of two parts is created. If you
want to reorganize your files, you can move parts from one VBB file to
another. For example, you may decide to move all Data Access Builder
parts related to the property subsystem in the VRPROP.VBB file.

136 VisualAge for C++ for OS/2

Using Data Access Builder Parts with Visual Builder

To use the parts, you must establish a database connection. For this
purpose, Data Access Builder provides specific parts in the
VBDAX.VBB file. This file is located in the D : \ I BMCPP\DDE4VB\ directory.
You must load it in Visual Builder to access its different parts:

D IDSconnectcanvas-used as a general dialog to connect to a data-
base, E. This part can be reused to connect to a database in provid-
ing the following information (Figure 50):
> Database name
> Access mode (share or exclusive mode)
> Userid
> Passwoi.d

IDatastore-a general-purpose part that gathers many of the ser-
vices you need to establish and manage and database connection,
E.

The attributes of IDatastore are:
> isconnected, connection status (TRUE if connected, FALSE

otherwise)
> datastoreName, database name
> shareModeExclusive, flag enabled for exclusive mode, flag

reset for share mode
> userName, userid for the connection
> authentication, password for the connection

The events IDatastore can generate are:
> Connected, sent when the connection is established
> Disconnected, sent when the connection is terminated
> Transacted, sent when the connection is completed (rollback or

commit), false otherwise
The actions of IDatastore are:
> Connect, connect to the database
> Disconnect, disconnect from the database
> Commit, commit pending transaction
> Rollback, roll back pending transaction

Chapter 6. Mapping Belational Tables Using Data Access Builder 137

Using Data Access Builder Parts with Visual Builder

Figure 50. General Connection Dialog Canvas

Now that you are more familiar with Data Access Builder, let us build
a simple application (Figure 51). This time, you do not use the Work-
Frame/2 environment to organize your code. Instead, you start Data
Access Builder from an OS/2 session. To create a database connection,
follow these instructions (we assume that VBDAX.VBB is loaded and
the Data Access Builder parts created for the Dacslib project have been
imported in Visual Builder):

1. Open an OS/2 session.

2. Change to the D:\VR\DACSLIB directory, where the Data Access
Builder library for the Property subsystem has been generated.

3. Start Visual Builder from this directory by issuing the 1. csvb com-
mand. The Visual Builder window is displayed, and the working
directory is set to the current directory.

4. Create a new visual part with IFramewindow as the base class:
• From the Visual Builder window, select Pc[rf i Ivezu... option.

138 VisualAge for C++ for OS/2

Using Data Access Builder Parts with Visual Builder

• Fill in the entry fields as follows:

Field
Class name
Description
File name
Part type
Base class

• Click on the

Value
TinyApp
Sample application with DACS
TINT
visual part
IFramewindow

Open push button. An IFramewindow* part is
displayed on the free-form surface.

5. Add an IDatastore* part on the free-form surface, E (use Op£Zo77 i
Add pcbrfs.. . from the Composition Editor menu bar).

6. Open its settings notebook and set its attributes as follows (we
assume that a user, USERID, with a password, PASSWORD, can
connect to the REAL database):

Field Value
datastoreName REAL
userid USERID
authentication PASSWORD

7. Connect the Ready event of the application to the Connect action
of IDatastore, E. (The event is accessible from the free-form sur-
face pop-up menu.)

E]

Figure 51. Simple Application with Data Access Builder

You can then use the database connection to interact with the rela-
tional tables. If you want to display the contents of the PROPERTY
table in a list box:

1. Add a PropertyManager* part on the free-form surface, E (use
Op£Zo77 i Add pcLrfs... from the Composition Editor menu bar).

Chapter 6. Mapping Pelational Tables Using Data Access Builder 139

Using Data Access Builder Parts with Visual Builder

2. From the Visual Builder palette, select an ICollectionviewList-
box* part in the LZsfs category and drop it on the IFramewindow*
part. (An ICollectionviewListBox part is a general-purpose list box
that displays objects of any type in a collection.)

3.gnp:nonthtiesedte±:e8rsaLnstaegbe°::t°tfh:h;£e[£°fL;;:t±t°on¥LLeowpLe±::;%°,Xfi.PTahrt:

items attribute maintained by the collection list box is set to the
IVsequence<Property*>* type and matches the type of the items
attribute held by PropertyManager (see the attribute-to-attributie
connection E] in Figure 51 on page 139).

4. Connect the Connected event of IDatastore to the Refresh
action of PropertyManager, E.

5. Connect the ffeJ„s attribute of PropertyManager to the ££e7ms
attribute of the list box, E.

6. Switch to the Class Editor and fill in the .LJB Fjze IVcz77?e entry
field with DACSLIB.LIB. A pragma statement is added to the class
header file generated by the Visual Builder to inform the linker to
link the application with the DACSLIB.LIB library.

7. Save your part and generate its code:
• To generate the source code of the part, select the ScEZJe ¢7tcz

Ge77ercife i PcErf soztrce option from the FZze pull-down menu
of the Visual Builder window.

• To generate the make file of your tiny application, select the
Sc!zJe cIJtcz Ge7ierclfe i 77tclj7tt) for part option from the Fjze pull-
down menu of the Visual Builder window.

140 VisualAge for C++ for OS/2

Using Data Access Builder Parts with Visual Builder

When you drop a part on the free-form surface by using
Opfjo7?s i Add Pclrfs ..., you cannot enter a part's class name
without a trailing star (* for the dereferencing operator). If
you omit the star, you can only drop a variable of the part.
Also, if you drop a part from the palette, you may notice that
its type is a pointer to the part itself. In fact, you cannot drop
on the free-form surface a part that is not a pointer.
The relationship between a part and its subparts is an asso-
ciation of coJtfciz77777e7?i dy refere7tce; that is, the class of the
subpart is not embedded in the class of its composite part.
Rather, a pointer on the subpart is defined as an attribute of
the composite part. This subtle difference facilitates develop-
ment of the parts because you do not have to provide a copy
constructor (although we strongly recommend that you pro-
vide one for all of your parts (see item 11 ofE#ec£ZLJe C++
from Scott Meyers).

In fact, when you make connections between parts, you
define a class that contains methods requiring parts as
parameters (J7tj£Zcizzze is one of them; see Chapter 9, "Con-
necting the Parts," on page 227). By default, a parameter is
passed to a C or C++ function by value. Thus, the parameter
is copied into the stack before the call and restored when the
function terminates.

If you want to pass a part as a parameter, you must provide
the part with a copy constructor. If you do not provide a copy
constructor, you end up with compilation errors. To avoid this
problem, each part you drop on the free-form surface must be
a pointer whose base class holds a copy constructor!

You can now compile the code and run the application to see the con-
tents of the table displayed in the collection list box:

I Switch to the OS/2 session window and make sure that D : \VR\DAC-
SLIB is your current directory. (The compiler must have the Prop-
erty.hpp file to compile and the linker must have the DACSLIB to
link-edit the tiny application.)

I On the command line, enter: nmake tinyapp.mak.

I Once the code has been compiled and linked, run the application
by typing tinyapp on the command line.

Chapter 6. Mapping Belational Tables Using Data Access Builder 141

Using Data Access Builder Parts with Visual Builder

All of the columns are displayed, separated by a period, in the list box.
In "Overriding the String Generator of the Collection List Box" on
page 191, we explain how to choose the contents of the list box.

Read this!

Each time your application uses the IDatastore part, you
must bind the DAXSCL.BND file to any databases that your
application accesses. This bind file allows IDatastore to
connect, disconnect, and complete transactions against the
database. To bind the file, enter the following command:

SQLBIND D:\IBMCPP\BND\DAXSCL.BND

dc7fobc7se /G=PUBLIC

where database is the name of your database.

Now that we have mapped the tables to nonvisual parts, let us tackle
Visual Builder and begin to build the visual parts of the property sub-
system.

142 VisualAge for C++ for OS/2

ng Visual

A visual part is a visual representation of the application objects you
defined during the design phase (see "Object Design" on page 89). The
set of visual parts you define makes up the user interface of the appli-
cation.

To get acquainted with the different views you are going to build, you
can run the Visual Realty application that is provided as a CD-ROM
with this book (see Figure 52).

143

Figure 52. Visual Realty Application in Action

You will find all of the information you need to install and run this
application in Appendix A, "Installing the Application," on page 341.
You can also consult the READ.ME file on the CD-ROM for the latest
information.

Attention!

All of the visual parts that you build are prefixed with the letter A (for exam
ple, Propertyview is built as the Apropertyview part). With this naming con-
vention, the visual parts will be listed first in the Visual Builder window
visual part list box.

Also, in this chapter, I;jezu and co77?poszfe ujsztcbz pcI7.£ are synonyms.

To create visual parts, we strongly suggest that you begin from the
simplest parts and work up to the more complex parts. For example, to
build the visual parts of the Property subsystem, start from the sim-
plest view, AAddressview, and work up to the main view of the appli-
cation: ARealMainview. You can easily apply this building process by
following the I/Zezu hze7.cLrchy sfrztcfz4re, which depicts the use relation-
ship between the parts (see Figure 53). For example, according to the
hierarchy, AAddressview is built before Apropertyview because
AAddressview is used by Apropertyview, which in turn is used by
Apropertyupdateview, and so forth.

144 VisualAge for C++ for OS/2

Figure 53. View Hierarchy

As is evident in the view hierarchy, use of the Property subsystem
requires that you build the following visual parts:

AAddressview displays an address. It is used in the Buyer and Prop-
erty subsystems.

Apropertyview displays the property information.

Apropertycreateview displays the property information when a
new property is created.

Apropertyupdateview displays the property information when a
property is updated.

ADeleteDialogview displays a warning message before deleting
records from the database. It is reused by the Buyer,
the Property, and the Sale transaction subsystems.

ApropertysearchResultview displays a list of properties that
match the buyer's criteria.

Apropertysearchparameterview displays and collects the
buyer's criteria to select properties in the database.

AUpLoadview triggers the generation of the database export files.

Chapter 7. Creating Visual Parts 145

ApropertyManagementview is the primary window of the Prop-
erty subsystem and provides access to the property
management options.

ALogonview collects the user's authentication to establish a data-
base connection.

ARealsettingsview enables the user to update the application set-
tings.

ARealMainview is the main window application and enables the
user to log on to the database and to access the differ-
ent subsystems.

In the sections that follow, we describe how to use Visual Builder to
build the visual parts. We assume that you have some basic knowledge
of the tool (for a Visual Builder "crash course'', refer to "Using Visual
Builder" on page 27) and are familiar with the OS/2 environment. We
also assume that the following files are loaded in Visual Builder:

I VBDAX.VBB, database access parts
I VBMM.VBB, multimedia parts
I VBSAMPLE.VBB, general-purpose parts
I KBDHDR.VBB, general-purpose event handler for the keyboard

If you have installed VisuaIAge C++ on your D drive and you also have
installed the samples component, you will find the first three files in
the D:\IBMCPP\DDE4VB directory. The last file is provided on the CD-
ROM that accompanies this book. Refer to "Setting Up a Project for
Visual Builder" on page 122, where you will find instructions for build-
ing the VBLOAD.DAT file to load automatically these files in Visual
Builder when starting Visual Builder within each subproject.

Make sure that you read Chapter 5, "Setting Up the Development
Environment," on page 107 to get acquainted with the WorkFrame/2
development environment, which serves as a base for organizing our
sample application. From each subproject (property, service, common,
and main) that you define, you can access the Visual Builder window
by selecting the Visual action from the Project pull-down menu or the
project pop-up menu. You can also use the accelerator keys
Ctrl+Shift+V.

When you construct your visual parts, you will have to con figure some
parts, such as set canvas or multicell canvas, to enable them to evenly
display, when they resize, the controls they contain. These controls are
also called chzzd zuj7tdozus. The settings for these canvases assume
that you use the default font for your controls: System Proportional -
10. Because our application has been developed on an SVGA resolu-

146 VisualAge for C++ for OS/2

AAddressview

tion machine (1024 x 768 pixels in 256 colors), your panels may not
look exactly the same if you run the application on a machine that has
a different resolution.

Also, when you add an entry control, such as an entry field or a list
box, to another part or the free-form surface, the number of characters
you can type for the control has a default value. When you change the
default, the control is not resized accordingly, except when it is
dropped on a multicell canvas. You can change the width of the entry
control to reflect its actual limit by selecting the Reset £o defciz/Zf size
option in its pop-up menu. For example, suppose the entry field con-
trol you drop on the free-form surface has a default limit of 32 charac-
ters-this limit is kept in the Zzmzf attribute. When you change the
default to 10 characters, the width of the entry field control is not
updated accordingly. To resize the controls, select the control and click
on it with the right mouse button to display its pop-up menu. Then
select the Rese£ £o czefcIL4Zf size option to adjust its width to 10 charac-
ters.

In the sections that follow, you build the visual parts of the Visual
Realty application by using entry controls that hold data. The data
width-the specific number of characters-is given by the correspond-
ing attribute of its relational table (see Appendix C, "Database Defini-
tion," on page 347). Make sure that you reset the control's size to the
default size after changing the limit of characters it can accept. As
mentioned above, this constraint does not apply when you drop a con-
trol in a multicell canvas. In this case, setting the limit of the control
automatically sets its width.

Finally, "adding a part" to the Composition Editor means selecting the
part from its palette category and dropping it on the free-form surface
or another part. The first time you have to add a part that you have
not used, we will give you its category name. This rule always applies
except when we tell you to use Opfjo7? i Add pc!rL. from the menu
bar of the Visual Builder window.

It is now time to build your first visual part.

AAddressview
AAddressview represents the primary view for the Address class. It
consists of a multicell canvas-IMulticellcanvas part is the name of
the part that you use in Visual Builder~on which you lay out several
entry fields-IEntryField part-to display the Sfree£, ArecI, Czdy, and
ZZpcode attributes of the Address class and a combo box-IComboBox
part-to display its Sfofe attribute (see Figure 54).

Chapter 7. Creating Visual Parts 147

AAddressview

148

rstreet
Area

---F---===---|
Citg

State
I

Zip Code
11 I

Figure 54. AAddressview part

Instead of using a standard Icanvas part, you build AAddressview as
a subclass of the IMulticellcanvas part. This canvas enables the con-.
trols that you drop onto it to expand or shrink when it is resized.

An IMulticellcanvas part is a set of cells organized in rows and col-.
umns. A multicell canvas is like a spreadsheet; each cell can contain a
part, and a part can span multiple rows and columns. The cells are
adjusted to vary the text length of the control. Multicell canvases
enhance NLS and facilitate the use of the application in different
graphical resolutions.

Each time you create a visual part that inherits from the IFrame-.
Window part, the canvas of its client area is a standard canvas, Ican-.
vas part. The controls you place in such a canvas cannot be resized
when the canvas expands or shrinks. However, multicell canvases
enable your controls to resize when changing fonts or screen resolu-.
tion. Thus, we recommend that you replace the Icanvas part with an
IMulticellcanvas part in all frame windows of the Visual Realty
application.

You can work with a multicell canvas in two ways:
I You can choose to use a multicell canvas to enable the controls

that you drop into it to resize when the user resizes the multicell
canvas. For this purpose, you can select the columns and the rows
that you want to be expandable in your multicell canvas. Each
control that you drop in one of these rows or columns can then
grow or shrink according to the dimension of the multicell canvas.
For example, suppose you have an entry field that contains the
fully qualified name of a file. Let us say that this entry field can
accept a name that is 45 characters long. You can add this entry
field in a multicell canvas column that you can set to be expand-.
able, and you can set the limit attribute of the entry field to 45.
Then, you can resize the length of the entry field to your liking-
this size is known as the 77?Z7?Z77Lz477t size of your control. The multi-.
cell canvas memorizes this size as the limit below which the con-.
trol is clipped if the user continues to shrink the multicell canvas®

VisualAge for C++ for OS/2

AAddressview

(That is why a multicell canvas is also known as a 77tj7tj77}z" szze
ccmLJos.) When users want to type a long file name, they can
stretch the canvas so that the entry field stretches accordingly.
You will use this facility in "Building the Video Page" on page 166.

a You can choose to use a multicell canvas to enable your application
to be portable across different screen resolutions or font settings.
In this case, the multicell canvas does all the work for you. All you
do is drop your controls on the multicell canvas. Each time you
change the font type or the label of those controls, they are resized
according to the minimum size the control returns to the multicell
canvas.

To adjust the size of a parent window to the size of its canvas in any
type of resolution, the parent window must execute a movesizeTo-
Client action before displaying. This action requires, as a parameter,
an IRectangle object that describes the position and the minimum size
of the client. The action can be executed by triggering a custom logic
connection (see "Using Custom Logic" on page 249) from the ready
event of the free-form surface to the parent window:

target i movesizeTocli.ent(IRectangle(target i posi.tion(),
target i cli.ent()

i mi nimumsi. ze ())) ;

If you use a multicell canvas as the client canvas, you can adjust the
size of the multicell canvas to the size of the parent window by setting
its outermost columns and rows to be expandable. This is the method
you will use in this book (see, for example, "ADeleteDialogview" on
page 178).

Attention!

When you resize a control by using its handles-the han-
dles are the four small black boxes that appear on the
corners of the control when you select it-make sure that
you do not set the minimum size to a fixed value. If a
fixed minimum size is set for the control and the control
is used in combination with a minimum size canvas, it
will not resize properly when the screen resolution is
changed because its minimum size is not calculated at
execution time. To ensure that the minimum size is calcu-
lated at execution time, open the control's settings note-
book and, on the Sizeffosition page, select the Calculate
at execution time radio button. This precaution is not
necessary if you do not use the control in a minimum size
canvas.

In a multicell canvas, the width of a given column is the width of the
largest control in that column. Likewise, the height of a row is the
height of the highest control in that row. Thus, you may encounter
some trouble if, for example, you are seeking to drop two controls with

Chapter 7. Creating Visual Parts 149

AAddressview

a different width in the same column. The smaller control will adjust
to the width of the larger. You can prevent the smaller control from
resizing in two ways:

I Add another column in your multicell canvas and make the long-
est control span two columns. Use the ALT key to drag your con-
trol over multiple columns or rows. Then set the second column to
be expandable. In this way, the control expands across the second
column, and the shortest control is not resized. The problem with
this approach is that you make the first control expandable even
though expansion might not be needed. The second approach
resolves this issue.

I Use another canvas in the multicell canvas and drop the shortest
control on it. The constraint here is that you must use a minimum
size canvas that manages the minimum size attribute of its con-
trols. You can use the set canvas, the toolbar canvas, and the
multicell canvas as the minimum size canvas. Whichever canvas
you use, ensure that the visual part that you build will support
different screen resolutions and font settings. Use an Isetcanvas
part to add the zip code entry field in AAddressview. The Iset-
Canvas part is a set of cells organized in rows and columns called
decfes. It can be used to provide adjustable cells in rows or columns
within canvases.

A final word of advice: When you use a multicell canvas, do not place
controls in the first and last rows and in the first and last columns.
Reserve them for the left and right and top and bottom margins. You
can set the columns and rows to be expandable so that the controls in
the multicell canvas remain centered when it is resized.

To build AAddressview, follow the step-by-step instructions in Table 7.

Table 7. (Part 1 of3) Construr,ting AAddressview Part

Step Action

1 Start Visual Builder from the Common project (select Pro/.ecf i
VIsz/c!Z in the menu bar).

2 From the Visual Builder window, select Pcirf i Ivezu... option.

3 Fill in the entry fields as follows:

Field Value
Class name AAddressview
Description General-purpose address view
File name VRCOMM
Part type visual part
Base class IMulticellcanvas

Click on the Open push button. An IMulticellcanvas* part is dis-
played on the free-form surface.

150 VisualAge for C++ for OS/2

AAddressview

Table 7. (Part 2 of3) Constructing AAddressview Part

Step Action

4 Open the settings notebook of the IMulticellcanvas* part and con-
figure it as follows:

I Number of rows: 11
I Number ofcolumns: 5
I Expandable rows: 1, 11
I Expandable columns: 1, 5

Close the settings notebook.

5 Select the Sticky check box, E, below the palette. When the Sfjcfay
check box is selected, the mouse pointer remains loaded with the
last part that has been dropped on the free-form surface. This is a
convenient way of dropping several parts of the same type without
moving the mouse pointer back and forth from the palette to the
free-form surface.

6 Add five IstaticText* parts to the IMulticellcanvas* part, as shown
in Figure 54 on page 148, and name then appropriately. Change
their text attributes as follows: Street, Area, City, State, and Zip
Code. (The IstaticText* part is located in the DcbfcE e7Lfry category.)
Notice that, with the Sfjcky check box selected, the IstaticText*
part remains loaded in the mouse pointer after it has been dropped.
Because you are going to add four entry fields, keep the S£Zcfay
check box selected.

7 Add four IEntryField* parts (E, E, E, E) to cells (2, 4), (4, 4), (6, 4),
and (10, 4) of the IMulticellcanvas* part. (The IEntryField* part is
located in the Dc¥£cl e7?fry category.)

8 Open the settings notebook of each IEntryField* part and set the
names and limits as follows:

Part Name Limit
A EntryFieldstreet 20
8 EntryFieldArea 20
C EntryFieldcity 20
D EntryFieldzipcode 10

Close the settings notebooks. Refer to Appendix C, ``Database Deft-
nition," on page 347 for the structure of the PROPERTY_ADDRESS
table. When you add a part to another part or to the free-form sur-
face, Visual Builder automatically assigns a name to the part. It is
good practice to rename the parts to more meaningful names if you
want to refer to them from other parts. You change the part's name
from its settings or its pop-up menu.

9 In step 10, you are going to add only one IComboBox* part in the
IMulticellcanvas* part. Thus, you can deselect the S£Zcky check
box now.

Chapter 7. Creating Visual Parts 151

AAddressview

Table 7. (Part 3 of3) Constructing AAddressview Part

Step Action

10 Add an IComboBox* part to cell (8, 4) of the IMulticellcanvas*
part. (The IComboBox* part is located in the Ljsfs category.)

11 Open the settings notebook of the IComboBox* part, E, set its typetoRead-onlydrop-downanditsnameandlimitasfollows:

Part Name Limit
E CombostateBox 20

Close the settings notebook. Refer to Appendix C, "Database Defini-
tion," on page 347 for the structure of the PROPERTY ADDRESS
table.

12 Add an Isetcanvas* part to cell (10, 4) of the IMulticellcanvas*
part. This canvas will hold the entry field for the zip code. (The Iset-Canvas*partislocatedintheComposerscategory.)

13 Open the settings notebook of the Isetcanvas* part and, on theGeneralpage,setthewidthandheightofthemarginto0.Thenclosethesettingsnotebook.

14 Select the IMulticellcanvas* part and from its pop-up menu selecttheResettodefaultsizeoptiontoadjustitssizetothecontrolsit

holds.

Note: Reverse highlighted letters are keyed to Figure 54 on page 148.

You can improve your visual part so that the user can use the key-
board to move the input focus from one subpart to another.

Tabbing from One Part to Another

From a part's pop-up menu you can select the Tcl6bj7ig ci7td Dapffr
Orczer option to control the order in which the user tabs between its
subparts.

When you select the rcz6Z7jng cI7td Dapffr Order option of a part, the
tabbing order list of the part is displayed. From this list you can:
I Change the position of parts to reflect their order in the Composi-i

tion Editor. In effect, the order in which parts are placed on a can-.
vas part determines their tabbing order. You probably need to
change the order of the list as you add or rearrange parts. You
move one line of the list by dragging and dropping it to the loca-I
tion of your choice.

152 VisualAge for C++ for OS/2.

AAddressview

I Set groups and tab stops. To enable the user to move the input
focus to a part by using the Tab and Backspace keys, select the
Tab stop check box to the left of the part you want to be tabbed. If
you want the user to be able to move the input focus to a part with
the keyboard arrow keys, you must define a group of parts by
selecting the Group check box to the left of the first part in the
group-this part is called the group part. In the Tabbing and
Depth Order dialog box, each part under the group part is in the
group; the user can select each part by using the arrow key. To
start another group, select the Group check box for the part you
want to be the first part in that group. If you select both the
Group and Tab stop check boxes for a part, the user can tab to
the first part in the group and then use arrow keys to move to
other parts in the group. The user moves from one group to
another, using Tab and Shift Tab keys. In a group, the user
moves from one part to another, using the keyboard arrow keys.

I Perform operations on parts as you do in the Composition Editor.
You can access the pop-up menu of a part from the order list. You
will find this operation useful when you want to access a part that
you cannot see in the Composition Editor.

To enable the user to move from one input control to another by using
the keyboard keys, modify the AAddressview part as follows:

1. Select the IMulticellcanvas* part.
2. Select the Tc[bbz7tg c!77d Dapfh Order option from its pop-up menu.

3. If necessary, reorder the entry fields and the combo box to match
their order in the view (you can drag and drop a line in the list).

4. Select the Group check box of EntryFieldstreet to define a group.
5. Select the Tab stop check boxes for all entry fields and the combo

box as shown in Figure 55.
6. Close the window.

Chapter 7. Creating Visual Parts 153

AAddressview

Figure 55. Tabbing order for AAddressview

AAddressview is reused by Apropertyview to display the address of a
property. Therefore, Apropertyview must have access to the contents
of each entry field of AAddressview and to the contents of its combo
box.

Promoting a Part Feature

Promoting a part feature is a way of exposing the feature to another
part. When a feature is promoted in part A, it can be accessed from
anothe . part, 8, when part A is embedded as a subpart within part 8.
Thus, to use AAddressview as a subpart and access the contents of its
entry fields and its combo box in another part, you must promote the
fe#f attribute of these controls.

When you define a part in Visual Builder, the new features you add to
the part are not available from other parts unless you promote them.
You can promote the feature of a part in two ways:

I Select the part and use the Pro77?ofe pc}rf fecLfz/re... option from the
part's pop-up menu.

I Use the Promote page in the Class Editor.

154 VisualAge for C++ for OS/2

AAddressview

Let us promote the fe#f attribute of EntryFieldstreet:

1. Select EntryFieldstreet (E in Figure 54 on page 148) and click on it
with the right mouse button.

2. Select the Pro777ofe pcLrf fecLfzJre ... option.
3. Promote the fe#£ attribute (Figure 56).

applgBidisettings
capturepointer
clear
convertTOGUIstule
COPB

cut
disable
disableAutoscroll

selectedPlange
selectedText
selectedTextLengt
shadowcolor
showing
size
tabstop
text

anuEvent
characterTgpeEven
commandEvent
gotFocusEvent
inputDisabledEvent
inputEnabledEvent
lostFocusEvent
sgstemcommandEv€

Figure 56. Promote EntryFieldstreetText Attribute of AAddressview

Now that you have promoted your first feature, you must promote the
fexf attribute of the other controls: ComboBoxstate, EntryFieldArea,
EntryFieldcity, and EntryFieldzipcode.

When you have promoted all features, switch to the Class Editor and
fill in the Code ge77ercbfjo7? f£Ze group box as follows:

I C++ header file (.hpp): vrcadrv.hpp
I C++ code file (.cpp): vrcadrv.cpp

Save your part. At this time it is not necessary to generate the code
because the connections have not been drawn.

Chapter 7. Creating Visual Parts 155

Apropertyview

Apropertyview
Apropertyview is the view of the Property class. In the design object
model of the Property subsystem (Figure 41 on page 102), the Prop-
erty class is represented as an association of four different classes:
I Address
I Marketinglnfo
I PropertyLog
D MultiDoc

To reflect this association, you design the view of Property as a note-
book whose pages represent the respective view of each class compo-
nent (see Figure 57).

Note that the PropertyLog class is not represented as a notebook page
because it does not have any visual representation. It is used to hold
the time stamp of each creation or update in the database. In addition,
a Description page is added to display information that is related to
the Property class but does not fit on the Property page.

i

•.'.Fr:..I.Ir:*..Pry:._.grr/r_.F!r.+rtry.+.rHr.r.rr:::iyrr:::::.I.rr!:I;y.

Propertg ID
L..._..._`.._..._..._...i Characteristics ;*

I

Size
Lu '''''''''.'''''`''`'' '.''`''''```'' ' : Address `:

Bedrooms
.e " . .c

:?:>
.,",,,,,,,,,,.`,,,,,++,+++,,®`,®`,,,,,,,,,,,,+,,,I,,,Description•-,\b/,_``.`,,,,,,,,,,.`,.`,```^^J,,..N.,....-...,-.,,,,,,`.,,,,,,,.

111
Bathrooms

::

:.ii?:

Video .:•:

Stories
-.-E

I

ii::ii?:

i Marketing
• .:.:.:

Heating

Cooling
......'.''''...'.'.....E.'..'.'.........-'`-..'',...'.......''''.'''¥

• .:.:.:•.:.:.I11

is ::.'ii

'``````.``````

Figure 57. Apropertyview part

In the sections that follow, you build Apropertyview by using a note-
book part and then enhance it with the multicell canvas and the view-
port parts.

Reminder

156

You must promote all field attributes of the Apropertyview part because the
part is reused in Apropertycreateview and Apropertyupdateview, and
these attributes must be accessible.

VisualAge for C++ for OS/2

Apropertyview

Using a Notebook Control

The INotebook* part is a software representation of a physical note-
book. It presents information on tabbed pages that the user can dis-
play. sequentially or randomly. For an example of a notebook control,
open any Visual Builder settings editor.

When building a notebook, you can use its various settings to tailor its
appearance. You can:

D Select the type of binding (spiral or solid).
D Define the tab appearance, tab size, and tab text alignment.
I Define the page button size.

Once you have tailored the appearance of the notebook, you can add
pages by selecting an add page choice from its pop-up menu. If the
notebook does not have any pages, your only choice is to add a first
page with the Add J77jfjcLZ Pc[ge option. If the notebook has one or more
paLges, sctech aL page alnd choose Add Page After or Add Page Befiore .
When a notebook is added to the Composition Editor, it already has
one page (Figure 58).

Figure 58. Notebook for Apropertyview

To build Apropertyview as a notebook, follow the step-by-step instruc-
tions in Table 8.

Table 8. (Part 1 of2) Building Apropertyview As a Notebook

Step Action

1 Start Visual Builder from the Property project (select Project i
VIsz/ciz in the menu bar).

2 From the Visual Builder window, select Pc!rf i Ivezu.. . option.

Chapter 7. Creating Visual Parts 157

Apropertyview

Table 8. (Part 2 of 2) Building Apropertyview As a Notebook

Step Action

3 Fill in the entry fields as follows:
Field Value
Class name Apropertyview
Description Property primary view
File name VRPROP
Part type visual part
Base class INotebook

Click on the Open push button. An INoteBook* part is displayed on
the free-form surface with one initial page.

4 Open the settings notebook of the INotebook* part and set its
appearance as follows:
Setting Value
Binding Spiral
Tab shape Square
Status area Left
Tab Center

Close the settings notebook.

5 Add four more pages, using the AcZcZ Pc!ge Affer option.

Building the Pages of a Noteboook

You can construct a notebook page by using one of two methods:
I Assemble controls on a separate canvas and drop the canvas on

the page client area. Use this method if the visual part for the
notebook page is reusable. For example, you built the AAddress-
View part (Figure 54 on page 148) as a reusable part and can drop
it on the Address page (Figure 61 on page 164). It is good practice
to build your notebook page on a separate canvas, especially when
the pages are complex. Furthermore, you can encapsulate non-
visual parts at the page level.

I Assemble controls directly on the notebook page. Use this method
if the visual part for the notebook page is not reusable or the page
is simple enough to be built directly in the notebook. Because the
Marketing, Characteristics, Video, and Description pages of our
Visual Realty application are fairly simple, you build them directly
in the notebook (Figure 64 on page 169).

Although you build the Marketing, Characteristics, Video, and
Description pages as nonreusable canvases, you should always design
your parts as reusable. In actuality, you might not reuse a specific part

158 VisualAge for C++ for OS/2

Apropertyview

in your application, but you never know when you will need the part
in another application. Building for reuse implies building for other
applications.

Enhancing the Notebook Page

When you add a page to a notebook, the page is created with an Ican-
vas* part as a client area. On this canvas, you can add several parts to
enhance your page. As you know, the standard canvas is suitable for
most situations, but it does not allow the controls to be evenly distrib-
uted when it resizes. Thus, to enhance the notebook, you use a multi-
cell canvas for all pages.

The multicell canvas is not a panacea for all resizing problems, how-
ever. In effect, every canvas, whatever its type, has a fixed minimum
size that corresponds to the size of the canvas in the Composition Edi-
tor. Thus, the use of a multicell canvas for a notebook page does not
prevent the user from getting clipping effects when the notebook is
downsized.

In order for the user to scroll the page to access information when the
page is clipped, you must use a viewport in the notebook page. The
Iviewport part belongs to the Co77?posers category. It is a scrollable
framework for any type of canvas (Figure 59). The user interacts with
the controls placed inside the viewport and can scroll both horizontally
and vertically if the control does not fit in the frame window.

I

I,;??i;.::a:':;g:?;;#?;

PropertB ID
. :ichara risticsiiii;ii

Size
•`...,.`.........``...........`....lil

Bedrooms
'''''''`-'``' :;:;:;;;::i -.-..`..^..+,,,,,,,,,,,,i;i;Desc:

ion

Bathrooms
1i

'''"`"'''`'`' ;i;::;:;;i

;;li!vide1;:,:i`IX.-==.i.

Stories
11

•il!Mari:i

1!

Heating 11
I..............................

lH

< --:.- -:.`Ji:*,;a? *

Figure 59. Characteristics Page Using a Viewport

In the Visual Realty application, you use an Iviewport part for each
notebook page. In addition, you must attach a specific handler, IVB-
MinsizeviewportHandler, to each viewport. This handler ensures that
when a viewport grows in size, its child part will grow with it. In our

Chapter 7. Creating Visual Parts 159

Apropertyview

case, the child part is a multicell canvas that "knows" how to enlarge
proportionally. Without the handler, the multicell canvas would not
enlarge to fit the dimensions of the viewport.

Figure 60. Event Handler List Box

Building the Characteristics Page

The characteristics page is built from basic controls such as entry
fields, combo boxes, and numeric spin buttons. It serves as a good
example of the use of different controls for different needs. You build
this part in the same way you built AAddressview. This time, you use
the Isetcanvas part for each control that you drop on the multicell
canvas because the width of the control differs.

160 VisualAge for C++ for OS/2

Apropertyview

To build the characteristics page, follow the step-by-step instructions
in Table 9.

Table 9. (Part 1 of3) Building the Characteristics Page

Step Action

1 Select the first notebook page and change its tab label to Charac-
teristics.

2 Open the settings notebook of the INotebook* part and set the tab
parameters as follows:
Setting Value
Major tab width 130
Major tab height 30

Close the settings notebook.

The tab length is adjusted to fit the largest label of the notebook.
Usually you choose the tab length after you have entered its labels.
Use the Apply push button of the settings notebook to adjust the
length of the tabs.

3 Click inside the page to select the canvas and remove it.

4 Add an Iviewport* part to the page. (The Iviewport* part is located
in the Co77?posers category.)

5 Open the settings notebook of the Iviewport* part and, on the Ham-
dlers page, add the IVBMinsizeviewportHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

6 Add an IMulticellcanvas* part in the Iviewport* part. (IMulticell-
Canvas* part is located in the Co7xposers category.) Con figure the
IMulticellcanvas part as follows:

I Number of rows: 15
I Number ofcolumns: 5
I Expandable rows: 1, 15
I Expandable columns: 1, 5

7 Add seven IstaticText* parts to the IMulticellcanvas* part as
shown in Figure 57 on page 156 and change their text attributes as
follows: Property ID, Size, Bedrooms, Bathrooms, Stories, Heating,
and Cooling.

8 Add seven Isetcanvas* parts in cells (2, 4), (4, 4), (6, 4), (8, 4), (10,
4), (12, 4), and (14, 4) of the IMulticellcanvas* part.

Chapter 7. Creating Visual Parts 161

Apropertyview

Table 9. (Part 2 of3) Building the Characteristics Page

Step Action

9 Add two IEntryField* parts (E, E]) to the Isetcanvas* parts in cells
(2, 4) and (4, 4) of the IMulticellcanvas* and set their names and
limits as follows:
Part Name Limit
A EntryFieldpropertylD 5
8 EntryFieldsize 5

10 Add three INumericspinButtons* parts (E, E, I) to the Isetcanvas*
parts located in cells (6, 4), (8, 4), and (10, 4) (the INumericspin-
Button* part is located in the Dc[£cl e77,fry category) and set them up
follows:

Part Name Limit Lower uppervalue
C NumericspinButtonBedrooms 1 0 6 0
D NumericspinButtonBathrooms 1 1 4 1
E NumericspinButtonstories 1 1 3 1

A property with no bedrooms is a studio.

11 Add two IComboBox* parts (E and E) to the Isetcanvas* parts in
cells (12, 4) and (14, 4) and set their names and limits as follows:
Part Name Limit
F ComboBoxHeating 20
G ComboBoxCooling 20

12 Open the settings notebook of ComboBoxHeating and set its con-
tents as follows:

D NO Heating
I Gas Electric
I Propane Gas
I Bottled Gas
I Solar
I Oil Central
I Forced Air Wall
I Furnace Floor
I Furnace Radiant
I Baseboard
I Steam or Hot Water
I Heatpump
I Other

Select Read-only drop-down in the Combo box type group box.
Close the settings notebook.

162 VisualAge for C++ for OS/2

Apropertyview

Table 9. (Part 3 of3) Building the Characteristics Page

Step Action

13 Open the settings notebook of ComboBoxCooling and set its con-
tents as follows:

I No Cooling
I Central Conditioner
I Room Conditioner
I Evaporative Cooler
I Other

Select Recbd-only drop-down ±n the Combo box type group box.
Close the settings notebook.

14 Select the IMulticellcanvas* part and open the Tabbing and Depth
Order dialog box. Set the tabbing groups as follows (see "Tabbing
from One Part to Another" on page 152):
Group Tab Feature
X X EntryFieldpropertylD

X EntryFieldsize
X NumericspinButtonBedrooms
X NumericspinButtonBathrooms
X NumericspinButtonstories
X ComboBoxHeating
X ComboBoxCooling

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 57 on page 156.

Building the Address Page

To build the address page, reuse AAddressview as shown in Figure 61.

Chapter 7. Creating Visual Parts 163

Apropertyview

Figure 61. Address page

Follow the step-by-step instructions in Table 10.

Table 10. Building the Address Page

Step Action

1 Select the second notebook page and change its tab label to
Address.

2 Click inside the page to select the canvas and remove it.

3 Add an Iviewport* part to the page.

4 Open the settings notebook of the Iviewport* part and, on the Ham-
dlers page, add the IVBMinsizeviewportHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

5 Add an AAddressview* part in the Iviewport* part (Op£Zo7? i AcZcZ
pc!rfs... from the Composition Editor menu), E. The AAddressview*
part is added to the page. Notice that you cannot access its sub-
parts.

Note: The reverse highlighted letter is keyed to Figure 61.

Building the Description Page

The description page (Figure 62) consists of three controls: a viewport,
a multicell canvas, and a multiple-line edit (MLE) control. The MLE
control provides users with a basic word processor that enables them
to briefly describe the property.

164 VisualAge for C++ for OS/2

Apropertyview

Figure 62. Description page

To build the description page, follow the step-by-step instructions in
Table 11.

Table 11. Building the Description Page

Step Action

1 Select the third notebook page and change its tab label to Descrip-
tion.

2 Click on the page to select the canvas and remove it.

3 Add an Iviewport* part to the page.

4 Open the settings notebook of the Iviewport* part and, on the Ham-
dlers page, add the IVBMinsizeviewportHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

5 Add an IMulticellcanvas* part to the Iviewport* part. Stretch the
part to fill in the page and con figure it as follows:

I Number of rows: 3
I Number of columns: 3
I Expandable rows: 2.
I Expandable columns: 2

The MLE control will grow when the page is resized.

6 Add an IMultiLineEdit* part to the IMulticellcanvas* part
(IMultiLineEdit* part is located in the Dczfc! e7Lfry category) and
change its name to MultiLineEditDescription, E. Stretch the part to
fill in the page.

Note: The reverse highlighted letter is keyed to Figure 62.

Chapter 7. Creating Visual Parts 165

Apropertyview

Building the Video Page

The video page (Figure 63) enables the buyer to watch a video of the
property. The page is built from a visual representation of a VCR com-
mand control: the IMMplayerpanel part. For this part to be added to
the Composition Editor, the VBMM.VBB file must be loaded in Visual
Builder (FZze i locld from the Visual Builder window).

Li-- I
_

IRE ,. , I

i

'-
:FileName I

:;II

E

I

E

I# IIIIIIIIIIIIIIIIIIIIIIii==i

Figure 63. Video page

This time, you build the part by using several multicell canvases, each
of which is in charge of handling the resizing of a specific portion of
the page. On the Video page, the f£Ze 7tcz77te e7tfry field and the canvas
where the video is displayed are expandable. A group box is used to
logically group the video controls and the entry field.

To build the video page, follow the step-by-step instructions in
Table 12.

Table 12. (Part 1 of 3) Building the Video Page

Step Action

1 Select the fourth notebook page and change its tab label to Video.

2 Click inside the page to select the canvas and remove it.

3 Add an Iviewport* part to the page.

166 VisualAge for C++ for OS/2

Apropertyview

Table 12. (Part 2 of 3) Building the Video Page

Step Action

4 Open the settings notebook of the Iviewport* part and, on the Ham-
dlers page, add the IVBMinsizeviewportHandler handler to the
handler list (Figure 60 on page 160). Close the settings notebook.

5 Add an IMulticellcanvas* part to the Iviewport* part. Stretch the
part to fill in the page and con figure it as follows:

I Number of rows: 11
I Number of columns: 9
I Expandable rows: 1, 10, 11
I Expandable columns: 1, 5, 9

Use Figure 64 on page 169 to position the controls in the IMulticell-
Canvas* part. Notice that row 10 and column 5 are set to expand-
able so that the entry field and the multicell canvas used for the
video canvas can expand.

6 Add one IstaticText* part to cell (4, 3) of the IMulticellcanvas*
part and change its text attribute to Filename.

7 Add one IEntryField* part to cell (4, 5) of the IMulticellcanvas*
part and set its name to EntryFieldvideo and its limit to 40, E.

8 Open the settings ofEntryFieldvideo and, on the Styles page, set
the 7-ec!d077dy radio button to On to prevent the user from entering a
file name in the entry field. To set the contents of the entry field, the
user must use the FjJ7d... push button.

9 Add an Isetcanvas* part, E, to cell (6, 3) of the IMulticellcanvas*
part. This canvas will contain two push buttons.

10 Open the settings notebook of the Isetcanvas* part and, on the
General page, set the deck orientation to Vertical and the margin
width to 0. The push buttons dropped onto the canvas will line up
vertically.

11 Add an IMulticellcanvas* part, E, to cell (6, 5) of the first IMulti-
Cellcanvas* part and con figure it as follows:

I Number of rows: 3
I Number of columns: 3
I Expandable rows: 1, 3
I Expandable columns: 1, 3

This canvas will contain the IMMplayerpanel part and will ensure
that the panel remains centered underneath the entry field when
the page is resized.

Chapter 7. Creating Visual Parts 167

Apropertyview

Table 12. (Part 3 of 3) Building the Video Page

Step Action

12 Add an IMulticellcanvas* part, E, to cell (10, 5) of the first IMulti-
Cellcanvas* part and con figure it as follows:

I Number of rows: 3
I Number ofcolumns: 3
I Expandable rows: 2
I Expandable columns: 2

This canvas will contain the canvas for the video and will grow
when the page is resized.

13 Add an Icanvas* part to cell (2, 2) of the IMulticellcanvas* part, E.
(Icanvas* part is located in the Co77aposers category.) The video is
displayed inside.

14 Add two IPushButton* parts to the Isetcanvas* part, E, and
change their labels as shown in Figure 63. (The IPushButton* part
is located in the Bztffo7ts category.)

15 Open the settings notebook of the LoczcZ push button and set its
name to Pz4shBztffo7?Loc}d. Close the settings notebook.

16 Open the settings notebook of the FZ77d... push button and set its
name to PushButtonFind. Then switch to the Styles page and set
the defcLztz£Bzt££o77 radio button to On. Close the settings notebook.

17 Add one IMMplayerpanel* part, E], to the cell (2, 2) of the IMulti-
Cellcanvas* part (Op£Zo77 i Add pczr£... from the Composition Edi-
tor menu).

18 Add an IGroupBox* part on the first IMulticellcanvas* part and
change its name to Video. (The IGroupBox* part is located in the
Dczfcb e77£ry category.) Extend the group box from cell (2, 2) to cell (7,
6) to span the IEntryField* and IMMplaypanel* parts. (Use the
AIIT key to extend the group box beyond the multicell canvas cell
boundaries.)

19 Select the first IMulticellcanvas* part and open the Tabbing and
Depth Order dialog box. Define two tabbing groups as follows (see
"Tabbing from One Part to Another" on page 152):

Group Tab Fe ature
X X EntryFieldvideo
X X PushButtonLoad

X PushButtonFind

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 63 on page 166.

168 VisualAge for C++ for OS/2

Apropertyview

Building the Marketing Page

The marketing page (Figure 64) displays the marketing information

:E%u:ttaht:cp:eofterctoyLt]:o::.b;L±:f::a¥±cbat:±xctc::[=:::SSE:hE,asp,e:tnrdyfiLe:::
updated by the nonvisual part, AMarketinglnfo, which computes their
value according to the contents of entry fields E], E and E.

i

i.:.:.:i

Price
Ill I

[E i characterisI
Price/Sqft Not available I i Address

I
Dags on Market Not available iDescription`u..,,,,,

I I i video
11 I ,

Rate
I-FI '...\..I,i:M•.__._-==-_

.-.

Amount Not available
I
I I lE.-I

Plate

1'''''''''''''''-
I

i
Amount Not available

I

I I

>....

...I

+:«` i.ae

Figure 64. Marketing page

To build the marketing page, follow the step-by-step instructions in
Table 13.

Table 13. (Part 1 of 3) Building the Marketing Page

Step Action

1 Select the last notebook page and change its tab label to Market-
ing.

2 Click on the page to select the canvas and remove it.

3 Add an Iviewport* part to the page.

4 Open the settings notebook of the Iviewport* part and, on the Han-
dlers page, add the IVBMinsizeviewportHandler handler to the
handler list (Figure 60 on page 160). Close the notebook settings.

Chapter 7. Creating Visual Parts 169

Apropertyview

Table 13. (Part 2 of 3) Building the Marketing Page

Step Action

5 Add an IMulticellcanvas* part to the Iviewport* part. Stretch the
part to fill in the page and con figure it as follows:

I Number of rows: 22
I Number of columns: 7
I Expandable rows: 1, 22
I Expandable columns: 1, 7

Use Figure 64 on page 169 to position the controls in the IMulticell-
Canvas* part.

6 Add seven IstaticText* parts to the second column of the IMulticell-
Canvas* as shown in Figure 64 on page 169 and set their text
attributes as follows:

D Price
I Price/Sqft
I Days on Market
D Rate
I Amount
I Rate
D Amount

7 Add four more IstaticText* parts (E, E], E, E) to cells (5, 5), (7, 5), (13,
5), and (20, 5) of the IMulticellcanvas* part and set their part
names as follows:
Part Name
A StaticTextprice sqft
8 StaticTextD aysonMarket
C StaticTextc omms sionvalue
D StaticTextD ownpaymentvalue

8 Change the text attribute of IstaticText* parts E, E, E, and E to Not
Available and their respective limit to 7, 3, 7, and 7. Their contents
will be calculated later by the nonvisual part, AMarketinglnfo (see
"AMarketinglnfo" on page 214).

9 Add three IEntryField* parts (I, B E) to cells (3, 5), (11, 5), and (18,
5) of the IMulticellcanvas* part and set their part names and lim-
its as follows:
Part Name Limit
E EntryFieldprice 7
F EntryFieldcommissionRatesize 5
G EntryFieldD ownpaymentRate 5

10 Add two IGroupBox* parts to group the commission rate and
amount and the down payment rate and amount. The commission
group box extends from cell (9, 2) to cell (14, 6), and the down pay-
ment group box extends from cell (16, 2) to cell (21, 6).

170 VisualAge for C++ for OS/2

Apropertyview

Table 13. (Part 3 of 3) Building the Marketing Page

Step Action

11 Select the first IMulticellcanvas* part and open the Tabbing and
Depth Order dialog box. Define two tabbing groups as follows (see"TabbingfromOneParttoAnother"onpage152):

Group Tab Feature
X X EntryFieldprice
X X EntryFieldcommissionRate

X EntryFieldDownpaymentRate

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 64 on page 169.

To reuse Apropertyview in other parts, you must promote some of its
features. Switch to the Part Interface Editor and select the Promote
page. Promote the features listed in Table 14.

Table 14. (Part 1 of 2) Promoted Features ofApropertyview

Promote Feature Name Subpart Name FeatureType PromotedFeature

addressviewcomboBoxstate- Addressview attribute ComboBoxstate-

Text Text

addressviewEntryFieldAreaText Addressview attribute EntryFieldArea-Text

addressviewEntryFieldcityText Addressview attribute EntryFieldcity-Text

addressviewEntryFieldstreet- Addressview attribute EntryFieldstreet-
Text Text

addressviewEntryFieldzipcode- Addressview attribute EntryFieldzip-

Text CodeText

commissionRate EntryFieldcommission-Rate attribute valueASDouble

daysonMarket StaticTextDaysonMarket attribute text

downpaymentRate EntryFieldDownpayment-Rate attribute valueASDouble

price EntryFieldprice attribute valueASDouble

bathrooms NumericspinButton-Bathrooms attribute value

Chapter 7. Creating Visual Parts 171

Apropertycreateview

Table 14. (Part 2 of 2) Promoted Features ofApropertyview

Promote Feature Name Subpart Name FeatureType PromotedFeature

bedrooms NumericspinButtonBed-rooms attribute value

size EntryFieldsize attribute valueASDouble

propertylD EntryFieldpropertylD attribute text

cooling ComboBoxCooling attribute text

heating ComboBoxHeating attribute text

videoFileName EntryFieldvideo attribute text

Note: Notice that the numeric attributes are promoted as L7cIZz4eASDoztbze.

Now you can save Apropertyview. First, switch to the Class Interface
Editor and fill in the Code ge7?ercb£Zo7? f£Ze group box as follows:

I C++ header file (.hpp): vrpprpv.hpp
I C++ code file (.cpp): vrpprpv.cpp

Then save the part.

Apropertycreateview
Apropertycreateview (Figure 65) is a composite part that consists of
Apropertyview and three push buttons:
I Create, for creating a new property in the database
I Cancel, for canceling the operation and closing the window
I Help, for accessing on-line help

The base class of this part is an IFramewindow part. You tailor this
main window, adding an info area, IInfoArea part, to its frame and
changing the standard canvas to a multicell canvas. The info area is
used to display help information related to some parts of the view. We
explain the use of the info area with the fly-over help facility in "Add-
ing Fly-over Help to a Control" on page 247.

The three push buttons are added to a set canvas.

172 VisualAge for C++ for OS/2

Apropertycreateview

Figure 65. Apropertycreateview

To build Apropertycreateview, follow the step-by-step instructions in
Table 15.

Table 15. (Part 1 of 3) Constructing Apropertycreateview Part

Step Action

1 Start Visual Builder from the Property project (select Pro/.ecf i
VIsz4cLZ in the menu bar).

2 From the Visual Builder window, select Pclrf i Ivezu.. . option.

3 Fill in the entry fields as follows:
Field Value
Class name Apropertycreateview
Description View to create a property in the database
File name VRPROP
Part type visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

4 Change the IFramewindow* part title to New Property.

5 Delete the Icanvas* part in the IFramewindow*.

6 Add an IMulticellcanvas* part to the IFramewindow*.

Chapter 7. Creating Visual Parts 173

Apropertycreateview

Table 15. (Part 2 of 3) Constructing Apropertycreateview Part

Step Action

7 Open the settings notebook of the IMulticellcanvas* part and con-figureitasfollows:

I Number of rows: 4
I Number ofcolumns: 3
I Expandable rows: 2, 3
I Expandable columns: 2

When you set the row 3 to expandable, the Isetcanvas* part thatholdsthethreepushbuttonsiskeptinthebottomofthewindow

when the view is resized.

8 Switch to the Color page and select the Colors radio button of the
Cozor sezec£Zo7t group box. Then select paleGray in the Cozor UOZ-
ztes drop-down list box. In this way, all controls dropped in themulticellcanvashaveapalegraybackground.Closethesettingsnotebook.

9 Add an IInfoArea* part, E to the IFramewindow* part. (The IInfo-
Area* part is located in the Frc!77?e exfe7isjo7?s category).

10 Add an Apropertyview* E, to cell (2, 2) of the IMulticellcanvas*
part as shown in Figure 65 on page 173 (Opfjo7? i Addpclrfs fromtheCompositionEditormenu).

11 Add an Isetcanvas* part, E, to cell (4, 2) of the IMulticellcanvas*
part as shown on Figure 65 on page 173.

12 Add three IPushButton* parts to the Isetcanvas* part and set
their names as follows:

I PushButtoncreate
I PushButtoncancel
I PushButtonHelp

13 Change the fexf attribute of the three push buttons as follows:

I ~Create for PushButtoncreate
I ~Cancel for PushButtoncancel
I ~Help for PushButtonHelp

Notice the use of ~ for the key accelerator.

14 Open the settings notebook of PushButtonHelp and switch to the
Styles page. Set the heJp radio button to On to turn this regular
push button into a help push button. Set the 7topoj7iferFoczts radio
button to On to prevent the help push button from getting the
input focus when the user clicks on it. In this way, the application
can display help for the part that has the input focus when the user
clicks the heJp push button. Close the notebook settings.

174 VisualAge for C++ for OS/2

Apropertyupdateview

Table 15. (Part 3 of 3) Constructing Apropertycreateview Part

Step Action

15 Select the Isetcanvas* part and open the Tabbing and Depth
Order dialog box. Define a tabbing group for the three push buttons
as follows (see "Tabbing from One Part to Another" on page 152):
Group Tab Feature
XX PushButtoncreate

X PushButtoncancel
X PushButtoncreate

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 65 on page 173.

Now you can save Apropertycreateview. First, switch to the Class
Editor and fill in the Code ge7?ercL£Zo77 f£Ze group box as follows:

I C++ header file (.hpp): vrpcrtv.hpp
I C++ code file (.cpp): vrpcrtv.cpp

Then, save the part.

Apropertyupdateview
Apropertyupdateview (Figure 66) is a composite part that consists of
Apropertyview and three push buttons:
I Update, for updating property information in the database
I Cancel, for canceling the operation and closing the window
I Help, for accessing online help (Figure 66)

You build the Apropertyupdateview in the same way you built
Apropertycreateview.

Chapter 7. Creating Visual Parts 175

Apropertyupdateview

Figure 66. Apropertyupdateview

To build Apropertyupdateview, follow the step-by-step instructions in
Table 16.

Table 16. (Part 1 of 3) Constructing Apropertyupdateview Part

Step Action

1 Start Visual Builder from the Property project (select Project iVIsztczzinthemenubar).

2 From the Visual Builder window, select Pc!rf i Ivezu... option.

3 Fill in the entry fields as follows:
Field Value
Class name Apropertyupdateview
Description View to update property information in the database
File name VRPROP
Part type visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

4 Change the IFramewindow* part title to Property.

5 Delete the Icanvas* part in the IFramewindow* part.

6 Add an IMulticellcanvas* part to the IFramewindow*.

176 VisualAge for C++ for OS/2

Apropertyupdateview

Table 16. (Part 2 of 3) Constructing Apropertyupdateview Part

Step Action

7 Open the settings notebook of the IMulticellcanvas* part and con-
figure it as follows:

I Number of rows: 4
I Number ofcolumns: 3
I Expandable rows: 2, 3
D Expandable columns: 2

8 Switch to the Color page and select the Colors radio button of the
Cozor sezec£Zo7t group box. Then select paleGray in the Cozor zjcLZ-
z/es drop-down list box. In this way, all controls dropped in the
multicell canvas have a pale gray background. Close the settings
notebook.

9 Add an IInfoArea* part, E, to the IFramewindow* part.

10 Add an Apropertyview* part, E, to cell (2, 2) of the IMulticell-
Canvas* part as shown in Figure 66 on page 176 (Opfzo7t i Add
pcirfs from the Composition Editor menu).

11 Add an Isetcanvas* part, E, to cell (4, 2) of the IMulticellcanvas*
part as shown on Figure 66 on page 176.

12 Add three IPushButton* parts to the Isetcanvas* part and set
their names as follows:

I PushButtonupdate
I PushButtoncancel
I PushButtonHelp

13 Change the fe#£ attribute of the three push buttons as follows:

I ~Update for PushButtonupdate
I ~Cancel for PushButtoncancel
I ~Help for PushButtonHelp

Notice the use of ~ for the key accelerator.

14 Open the settings notebook of PushButtonHelp and switch to the
Styles page. Set the heJp radio button to On. Set the 77oPoZ77£e7.Fo-
cz/s radio button to On. Close the settings notebook.

Chapter 7. Creating Visual Parts 177

ADeleteDialogview

Table 16. (Part 3 of 3) Constructing Apropertyupdateview Part

Step Action

15 Select the Isetcanvas* part and open the Tabbing and DepthOrderdialogbox.SettheTabcheckboxesasfollows(see"TabbingfromOneParttoAnother"onpage152):

Group Tab Feature
X X PushButtonupdate

X PushButtoncancel
X PushButtoncreate

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 66 on page 176.

Now you can save Apropertyupdateview. First, switch to the Class
Editor and fill in the Cocze ge7?ercIfjo7t f;Ze group box as follows:

I C++ header file (.hpp): vrpupdv.hpp
I C++ code file (.cpp): vrpupdv.cpp

Then, save the part.

Apropertyview and Apropertyupdateview look quite similar; they
differ in their push button labels. Reusing Apropertyview saves a lot
of time and brings consistency to the whole application.

ADeleteDialogview

ADeleteDialogview is a simple visual part (Figure 67) that is used
throughout the application. It provides a way of warning users when
they go to delete a record in the database.

Figure 67. ADeleteDialogview

178 VisualAge for C++ for OS/2

ADeleteDialogview

Because you will reuse this part across different subsystems, do not
embed any Data Access Builder parts. Instead, promote two features:
I The buttonclickEvent of the OK push button. The part that reuses

ADeleteDialogview needs this promoted feature to know when the
button has been clicked and to perform the appropriate action.

D The fexf attribute of the textofRecord static text control. This pro-
noted feature is used to display, in the dialog box, the identifier of
the record to be deleted (see Table 17 on page 180 and Figure 67
on page 178).

ADeleteDialogview is used as a dialog window. It is not resizable, but
you still have to use the IMulticellcanvas* part to make this view
portable across different screen resolutions and different font settings.

Even though this view is not resizable, you must set some rows and
columns of the IMulticellcanvas* part to be expandable. In effect,
when running the application under different screen resolutions, this
view is resized to fit the new resolution and the canvas might be a bit
distorted. In setting the outermost columns and rows to be expand-
able, you minimize the distortion.

Notice that you use an IIconcontrol part to display an icon in the dia-
log window. The icon displayed is set by updating the DLL 7to77ie and
resoztrce JD fields in the IIconcontrol General settings page. Be aware
that an icon is not resized on either a set canvas or a multicell canvas
when the canvas is resized.

In our sample application, you use the ABTICONS.DLL provided with
VisualAge C++. It contains predefined icons that you can use for your
own needs.

If you want to use your own specific icons, you can use Project Smarts
to create a Resource Dynamic Link Library project to build your own
DLL. In the complete application that accompanies this book, we use
our own specific DLL, REALICON.DLL, which you can reuse for your
future applications. To ensure that your application can access either
one of these DLLs, put them in a directory that your LIBPATH accesses
(check the LIBPATH environment variable in your CONFIG.SYS file).

Chapter 7. Creating Visual Parts 179

ADeleteDialogview

To build ADeleteDialogview, follow the step-by-step instructions in
Table 17.

Table 17. (Part 1 of 3) Building ADeleteDialogview

Step Action

1 Start Visual Builder from the Common project (select Projecf iVz.sztczzinthemenubar).

2 From the Visual Builder window, select Pc!rf i Ivezo... option.

3 Fill in the entry fields as follows:
Field Value
Class name ADeleteDialogview

F±e]:c:1;p±±:n %nce6a#rpose delete dialog view
Part type visual part
Base class IFramewindow

and click on the Open push button. An IFramewindow* part isdisplayedonthefree-formsurface.

4 Change the IFramewindow* part title to Delete Record.

5 Open the settings notebook of the IFramewindow* part andchangethestylesettingasfollows:

Setting Value
dialogBorder On
maximizeButton Off
minimizeButton Off
sizingBorder Off
systemMenu Off

Close the settings notebook. The window turns into a nonresizable
dialog box.

6 Delete the Icanvas* part in the IFramewindow* part.

7 Add an IMulticellcanvas* part to the IFramewindow* part.

8 Open the settings notebook of the IMulticellcanvas* part andconfigureitasfollows:

I Number of rows: 7
I Number ofcolumns: 3
I Expandable rows: 3, 5
I Expandable columns: 1, 3

9 Switch to the Color page and select the Colors radio button of the
Cozor sezecfjo7t group box. Then select paleGray in the Cozor zjc!Z-
zzes drop-down list box. Close the settings notebook.

180 VisualAge for C++ for OS/2

ADeleteDialogview

Table 17. (Part 2 of 3) Building ADeleteDialogview

Step Action

10 Add an Isetcanvas* part, n, to cell (2, 2) of the IMulticellcanvas*
part. This set canvas will contain an icon and a static text control
lined up horizontally.

11 Add an IIconcontrol* to the Isetcanvas* part. (The IIconcontrol*
part is located in the Dcifci e7tfry category.)

12 Open the settings notebook of the IIconcontrol* part. Set the DLLnametoabticonsandtheresourceIDto531.Closethesettings

notebook.

13 Add an IstaticText* part to the Isetcanvas* part and change its
label to Delete.

14 Open the settings notebook of the Isetcanvas* part, set its align-menttocenter(selectthemiddleradiobuttonintheAZzg7"e7?£

group box), and adjust its margin and pad dimensions as follows:
Field Value
Margin width 0
Margin Height 0
Pad width 10
Pad Height 0

Close the settings notebook.

15 Add an IstaticText* part to cells (5, 2) of the IMulticellcanvas*
part and change its label to Recordldentifier.

16 Open the settings notebook of the Recordldentifier IstaticText*partandchangethepart'snametoRecordlD.Onthesamepage,setthestatictextalignmenttocenter(selectthemiddleradiobut-

ton of the Azjg7t77ie7?£ group box). Close the settings notebook.

17 Promote the fe#£ attribute of the RecordlD part.

18 Add an IMulticellcanvas* part, E, to cell (7, 2) of the IMulticell-
Canvas* part and con figure it as follows:

I Number of rows: 3
I Number ofcolumns: 5
I Expandable rows: none
I Expandable columns: 1, 3, 5

19 Add two IPushButton* parts to cells (2, 2) and (2, 4) of the IMulti-
Cellcanvas* part, E, and change their labels as shown in Figure
67 on page 178.

Chapter 7. Creating Visual Parts 181

Apropertysearchpesultview

Table 17. (Part 3 of 3) Building ADeleteDialogview

Step Action

20 Change the push button names to PushButtonoK and Push-
Buttoncancel.

21 Promote the buttonclickEvent event of pz/shbz/££oJ?OK.

22 Set PushbuttonoK as the default push button (set defaultButton
to On in the Styles page of the settings notebook).

23 Select the IMulticellcanvas* part, I, and open the Tabbing andDepthOrderdialogbox.SettheTabcheckboxesasfollows(see"TabbingfromOneParttoAnother"onpage152):

Group Tab Feature
X PushButtonoK
X PushButtoncancel

Note: Reverse highlighted letters are keyed to Figure 67 on page 178.

Now you can save ADeleteDialogview. First, switch to the Class Edi-
tor and fill in the Cocze ge7?ercifz.on f£Ze group box as follows:

I C++ header file (.hpp): vrcdelv.hpp
I C++ code file (.cpp): vrcdelv.cpp

Then, save the part.

ApropertysearchResultview
ApropertysearchResultview (Figure 68) displays a list of properties
that match the buyer's criteria. To display these properties in tabular
form, use an IVBContainercontrol part, which represents a container
control.

Using a Container

An IVBContainercontrol part is a control used to display nonvisual
interface objects. As a container, it shows different views of the objects
it holds:

Text and flowed text view The objects are represented as text in
single (text view) or multiple (flowed text view) col-
umns.

182 VisualAge for C++ for OS/2

ApropertysearchBesultview

Name and flowed name view The objects are represented as small
icons followed by text in single (name view) or multi-
ple (flowed name view) columns.

Icon view The objects are represented as icons.

Tree view The objects are represented hierarchically.

Details view The objects are represented as a table, with one row
for each object and a column for each object attribute.
This is the view you use to display the property list
(Figure 68).

Figure 68. ApropertysearchResultview

For our sample application, you will use the details view of the Prop_-
ad_log Data Access Builder part. The Prop_ad_1og's attributes are dis-
played in column controls, which are added to the container. The
following attributes are displayed: identifier, state, city, and area. In
addition, you tailor the container by adding an icon of a property.

ApropertyResultview is built from an IFramewindow part. An IMulti-
Cellcanvas part is used as the client area in place of the standard
Icanvas part.

You build the view in two steps: First you tailor a container to suit
your needs, then you add five columns to the container and tailor each
of them to display the necessary information (an icon of the property,
the property status, the city, the state, and the area).

To build the container, follow the step-by-step instructions in Table 18.

Table 18. (Part 1 of 2) Building ApropertysearchResultview: Building a
Container

Step Action

1 Start Visual Builder from the Property project (select Projecf i
VIsz4c!Z in the menu bar).

Chapter 7. Creating Visual Parts 183

ApropertysearchBesultview

Table 18. (Part 2 of 2) Building ApropertysearchResultview: Building aContainer

Step Action

2 From the Visual Builder window, select Pczrf i Ivezu... option.

3 Fill in the entry fields as follows:
Field Value
Class name ApropertysearchResultview
Description View of a property list
File name VRPROP
Part type visual part
Base class IFramewindow

4 Change the IFramewindow* part title to Property SearchResult.

5 Delete the Icanvas* part in the IFramewindow* part.

6 Add an IMulticellcanvas* part to the IFramewindow* part.

7 Open the settings notebook of the IMulticellcanvas* part and con-figureitasfollows:

I Number of columns: 1
I Number of rows: 1
I Expandable columns: 1
I Expandable rows: 1

You do not have to add extra rows and columns in the IMulticell-
Canvas* part, because the container can fill in the entire window
client area.

8 Add an IVBContainercontrol* part to the IMulticellcanvas* part.(TheIVBContainercontrol*partislocatedintheZizsfscategory.)

9 Open the settings notebook of the IVBContainercontrol* part andsetthefollowingvalues(Figure69onpage185):

Field Value

Subpart name Propertycontainer
Title PRO PERTY
Show title selected
Show title separator selected
Title alignment centered
View type showDetailsview
Item type Prop_ad_log*
Text are a
Icon #IDynamicLinkLibrary("abticons").Ioadlcon(106)

Notice that the item type field is filled in with the type of the Data
Access Builder part that maps the PROP_AD LOG table. The con-
tainer is tailored by displaying a "house" icon. This icon will be dis-
played in the icon column that you add later on.

184 VisualAge for C++ for OS/2

Apropertysearchpesultview

When you enter the type of the object container, you must be aware of
the object type that the object provider provides. In the sample appli-
cation, the container is filled with the objects in the Data Access
Builder Prop_ad_1ogManager part. In this sense, Prop_ad_1og-
Manager constitutes the object provider. As mentioned in Chapter 6,
"Mapping Relational Tables Using Data Access Builder," on page 127,
we know that Prop_ad_1ogManager contains an attribute, jfe77ts, of
type IVsequence<Prop_ad_log*>*. This attribute will be connected by
an attribute-to-attribute connection to the same attribute of the con-
tainer. Thus, the container will hold a sequence of objects of Prop_ad_-
1og* type (Figure 69).

PEFITY

i

Figure 69. Container General Settings Page

Once the container is set up, you must add container columns to dis-
play the information.

Adding Columns to a Container

The detail view requires that you add a container column to the con-
tainer for each object attribute to be displayed. A container column is
represented by the IContainercolumn* part.

Chapter 7. Creating Visual Parts 185

Apropertysearchpesultview

You add an IContainercolumn* part to your container by dragging it
from the parts palette and dropping it on the container. Then, you edit
its settings to reflect the information you want to display (Figure 70).

Figure 70. Container Column General Settings Page

To add the columns to your container, follow the step-by-step instruc-
tions in Table 19.

Table 19. (Part 1 of 3) Building ApropertysearchResultview: AddingContainerColumns

Step Action

1 Add five IContainercolumn* parts in the IContainercontrol* part.(TheIContainercolumn*partislocatedintheLjsfscategory.)

186 VisualAge for C++ for OS/2

ApropertysearchBesultview

Table 19. (Part 2 of 3) Building ApropertysearchResultview: Adding
Container Columns

Step Action

2 Open the settings notebook of the first IContainercolumn* part
and change the fields as follows:
Field Value
Subpart name Containercolumnlcon
Heading text Icon
width 59
Use Icon attribute set in the container selected

The resource identifier set in the IContainercontrol* part is used
to display an icon in this IContainercolumn* part. Switch to theStylespageandsettheverticalseparatortoOn.Closethesettings

notebook.

3 Open the settings notebook of the second IContainercolumn* part
and change the fields as follows:
Field Value
Subpart name Containercolumnld
Heading text Id
width 5 9
Use an attribute from the part selected
Attribute s property_id

The property identifier is displayed in this column. Switch to theStylespageandsetthehorizontalseparatorandverticalseparator

to On. Close the settings notebook.

4 Open the settings notebook of the third IContainercolumn* part
and change the fields as follows:
Field Value
Subpart name Containercolumnstate
Heading text State
width 59
Use an attribute from the part selected
Attribute s state

The property state is displayed in this column. Then, switch to theStylespageandsetthehorizontalseparatorandverticalseparator

to On. Close the settings notebook.

Chapter 7. Creating Visual Parts 187

Apropertysearchparameterview

Table 19. (Part 3 of 3) Building ApropertysearchResultview: Adding
Container Columns

Step Action

5 Open the settings notebook of the fourth IContainercolumn* part
and change the fields as follows:
Field Value
Subpart name Containercolumncity
Heading text City
Width 59
Use an attribute from the part selected
Attribute s city

The property city is displayed in this column. Then, switch to the
Styles page and set the horizontalseparator and verticalseparator
to On. Close the settings notebook.

6 Open the settings notebook of the last IContainercolumn* part
and change the fields as follows:
Field Value
Subpart name ContainercolumnArea
Heading text Area
Width 59
Use an attribute from the part selected
Attribute s area

The property area is displayed in this column. Switch to the Styles
page and set the horizontalseparator and verticalseparator to On.
Close the settings notebook.

Now you can save ApropertysearchResultview. First, switch to the
Class Editor and fill in the Cocze ge7terc!£Zo7} f£Ze group box as follows:

I C++ header file (.hpp): vrpsrrsv.hpp
I C++ code file (.cpp): vrpsrrsv.cpp

Then, save the part.

Apropertysearchparameterview
In the Visual Realty application, the user can search properties
according to the buyer's preferences. As stated in "Requirement Speci-
fications" on page 64, different criteria are taken into account: area,
price range, size range, number of bedrooms, and number of bath-
rooms. The user may choose to search properties using some or all of
these criteria.

188 VisualAge for C++ for OS/2

Apropertysearchparameterview

One way of designing a visual part that enables the user to construct a
search properties clause is to build a part that holds as many input
controls as search criteria and use an IcheckBox part to select or dese-
lect each criterion.

Using Check Box Control

ch IcheckBox part is a square box with text that represents the set-
tings choice (Figure 71). A mark in the check box indicates that the
choice is selected. In our case, you use the IcheckBox part instead of
the IRadioButton part because the choices are not mutually exclusive.
For example, if the user wants to search all properties that range in
size from 500 to 2500 square feet, the user first selects the Size check-
box and then enters the size range.

Figure 71. Apropertysearchparameterview

The part is built from an IFramewindow part. An IMulticellcanvas*
part is used in the client area to display the parts when the window is
resized. Several IcheckBox* and IEntryField* parts are dropped on
the IMulticellcanvas. An Isetcanvas* holds three IPushButton*
parts.

The list of areas is displayed in a collection combo-box control:
ICollectionviewcomboBox*.

Using Collection CombinationlBox Control

ch ICollectionviewcomboBox part is a control that combines a selec-
tion list and an entry field for collection object choices. This selection
list displays the records of the LIST_AREA table. You will use the
List_areaManager Data Access Builder part to fill in the list. As with
an IVBContainercontrol part, the ICollectionviewcomboBox part
must be set up to display objects of a specific type. The type is entered

Chapter 7. Creating Visual Parts 189

Apropertysearchparameterview

in the Jfe77t type entry field of the General page in the ICollectionview-
ComboBox part's settings notebook. The type must be a pointer type of
the part that is displayed in the ICollectionviewcomboBox part. In
our case, you must set the type to List_area*.

The ICollectionviewcomboBox part combines the behavior of an
IEntryField part with an ICollectionviewListBox part. It behaves sim-
ilarly to the ICollectionviewListBox part (ICollectionviewcomboBox
and ICollectionviewListBox parts are also called cozzec£Zo7i list box).
When an object is added to an ICollectionviewListBox part or an
ICollectionviewcomboBox part, the display of its contents is ruled by
its method: Istring asstring(). This method returns an Istring, which
can be the concatenation of several object attributes.

For example, the parts that Data Access Builder generates have an
asstring method that returns the concatenation of all of their
attributes, after conversion if necessary, separated by a dot. This is
why, in the first example that you built in Section "Using Data Access
Builder Parts with Visual Builder" on page 136, the ICollectionview-
ListBox part displays each property part as the concatenation of the
property identifier, property size, number of stories, number of bath-
rooms, number of bedrooms, type of cooling, type of heating, and
description text. In our example, the only information displayed by the
asstring method of the List_area part is the property area, because it
is the only attributei`of the corresponding relational view. When the
part does not have an asstring method, an evasive IVBase Object is
displayed instead.

You can tailor the information displayed in a collection list box in two
Ways:

a Override the asstring method of the part that must be displayed
in the collection list box.

I Override the string generator of the collection list box.

Overriding the asstring Method

Each object that you want to display in a collection list box must be
provided with an asstring method to get its equivalent Istring form. If
an object is already provided with an asstring method, you can over-
ride it with your own method by subclassing its corresponding class.
The asstring() method need only return an Istring object.

The only way to override the asstring method of a Data Access Builder
part is to edit the code directly. In effect, you cannot derive a class
from the generated part because you would also change the type of the
Zfe777s attribute managed by the manager class.

190 VisualAge for C++ for OS/2

Apropertysearchparameterview

Do not edit the Data Access Builder part directly because you will lose
all of your changes if you generate the code from the same part later.

Back to the small application you developed in Section "Using Data
Access Builder Parts with Visual Builder" on page 136. You can modify
the property code-the code is located in the property.cpp file-as
shown in Figure 72 to have only the property identifiers displayed in
the collection list box.

//....

public: Istring Property: :asstring()
(

return Istring(Property_id()) ,.
)

//....

Figure 72. Overriding the asstring Method

Overriding the String Generator of the Collection List Box

You can override the ICollectionviewListBox or the ICollectionview-
ComboBox string generator that customizes the part information to be
displayed. A string generator, IstringGenerator<Element>, is a tem-
plate class that manages the translation of Element objects to their
Istring form. It can provide strings for collection elements that are
used in the ICollectionviewListBox part or ICollectionviewcomboBox
part.

To use the IstringGenerator, you must define a subclass of the Istring-
GeneratorFn<Element> template class and override the pure virtual
function: virtual Istring stringFor(Element const& pElement). The
IstringGeneratorFn template class is an abstract base class that
defines the protocol for storing and calling functions that generate
Istring objects. Objects of this class represent functions that are called
when the stringFor function is called. The stringFor function accepts
an object reference of the template class type.

It is a good idea to override the string generator of a collection list box
when using the collection list box in tandem with Data Access Builder
parts. In effect, you do not have to edit the source code generated by
Data Access Builder to customize the contents of the collection list
box.

To have the property identifiers display in the ICollectionviewListBox
of the sample detailed in Section "Using Data Access Builder Parts
with Visual Builder" on page 136, follow these instructions:

1. Build a new class, IstringGeneratorForpropertyFn, to set a new
IstringGenerator for the ICollectionviewListBox (see Figure 73).

Chapter 7. Creating Visual Parts 191

Apropertysearchparameterview

2. Open the settings notebook of the ICollectionviewListBox* part.

3. Switch to the General page and fill in the String generator entry
field with: IstringGenerator<Property*>(new IstringGener-
atorForpropertyFn()).

4. Switch to the Class Editor and, in the Regz4Zrecz j7?cZz/de f£Zes list
box, add the file name where IstringGeneratorForpropertyFn is
defined.

Now you can regenerate the code and compile it.

// Class used to set a new IstringGenerator for a DAX part when
// used with an ICollectionviewListBox

#include <Propertyv.hpp> // DAX generated file.
// Property is the data object

#include <istrgen.hpp> // header file for IstringGenerator class

class IstringGeneratorForpropertyFn :
public IstringGeneratorFn<Property*>

(
public :

IstringGeneratorForpropertyFn() { } ,.
virtual ~IstringGeneratorForpropertyFn() {} ;

virtual Istring stringFor(Property* const& pproperty)
(

// Return the identifier of the property
return pproperty->Property_id () ;

)
} ,. // IstringGeneratorForpropertyFn

Figure 73. IstringGeneratorForpropertyFn Declaration

To build Apropertysearchparameterview, follow the step-by-step
instructions in Table 20.

Table 20. (Part 1 of 5) Building Apropertysearchparameterview

Step Action

1 Start Visual Builder from the Property project (select Projecf i
VIsz/cbz in the menu bar).

2 From the Visual Builder window, select PcLrf i Ivezu... option.

3 Fill in the entry fields as follows:
Field Value
Class name Apropertysearchparameterview
Description View to collect the buyer preferences
File name VRPROP
Part type Visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

192 VisualAge for C++ for OS/2

Apropertysearchparameterview

Table 20. (Part 2 of 5) Building Apropertysearchparameterview

Step Action

4 Change the IFramewindow* part title to Search Property.

5 Delete the Icanvas* part in the IFramewindow* part.

6 Add an IMulticellcanvas* part in the IFramewindow* part.

7 Open the settings notebook of the IMulticellcanvas* part and con-
figure it as follows:

I Number of rows: 12
I Number of columns: 5
I Expandable rows: 11
I Expandable columns: 1, 5

Close the settings notebook.

8 Add five IcheckBox* parts, E, to cells (2, 2), (4, 2), (6, 2), (8, 2), and
(10, 2) of the IMulticellcanvas* part (IcheckBox* part is located in
the Bz4££o7?s category) and set their settings as follows:
Name Text
CheckBoxArea Area
CheckBoxprice Price Range
CheckBoxsize Size Range
CheckBoxBedrooms Bedrooms
CheckBoxBathrooms Bathrooms

9 Add an ICollectionviewListBox* part, E], to the IMulticellcanvas*
part and make it span three columns from cell (2, 4) to cell (2, 6).

10 Open the settings notebook of the ICollectionviewListBox* part
and set the fields as follows:
Field Value
Name CollectionviewArea*
Item type List area*
Limit 20
Combo box type Read-only drop-down

The area is 20 characters wide (see the PROPERTY table structure
in Appendix C, ``Database Definition," on page 347). The list box is
set to read-only to prevent users from typing in a property area
that does not exist in the database.

11 Switch to the Control page of the ICollectionviewListBox* part set-
tings notebook and deselect the Enabled check box. In "Aproperty-
Searchparameterview" on page 283, you will draw connections to
enable this control only when the CheckBoxArea is selected. Close
the settings notebook.

Chapter 7. Creating Visual Parts 193

Apropertysearchparameterview

Table 20. (Part 3 of 5) Building Apropertysearchparameterview

Step Action

12 Add four IEntryField* parts to cells (4, 4), (4, 6), (6, 4), and (6, 6) of
the IMulticellcanvas* part to hold the price and size ranges, E, E,i,E

13 Open the settings notebooks of each entry field and con figure them
as follows:

Name Limit Enabled check box
EntryFieldMinprice 7 unselect
EntryFieldMaxprice 7 unselect
EntryFieldMinsize 5 unselect
EntryFieldMaxsize 5 unselect

Close the settings notebooks. Deselect the Enabled check box of
each entry field from the Control page of its settings notebook. In"Apropertysearchparameterview" on page 283, you will draw con-
nections to enable this control only when their corresponding check
box (CheckBoxprice or CheckBoxsize) is selected.

14 Add an Isetcanvas* part in cell (8, 4) of the IMulticellcanvas*
part and set its margin width and height to 0. This setting enables
the numeric spin button boundaries for the number of bedrooms to
line up with the set canvas boundaries.

15 Add an INumericspinButton* part to the Isetcanvas* part to holdthenumberofbedrooms,E,andconfigureitasfollows:

Field Value
Name NumericspinButtonBedrooms
Alignment Center
Limit 1
Lower 0
Upper 6
Value 0
Enabled unselect

Unselect the Enabled check box of the numeric spin button from
its settings notebook Control page. In "Apropertysearchparameter-
View" on page 283, you will draw connections to enable this control
only when the corresponding CheckBoxBedrooms check box is
selected.

16 Add an Isetcanvas* part in cell (10, 4) of the IMulticellcanvas*
part and set its margin width and height to 0. This setting enable
the numeric spin button for the number of bathrooms to line up
with the set canvas boundaries.

194 VisualAge for C++ for OS/2

Apropertysearchparameterview

Table 20. (Part 4 of 5) Building Apropertysearchparameterview

Step Action

17 Add an INumericspinButton* part to the Isetcanvas* part to hold
the number of bathrooms, ill, and con figure them as follows:
Field Value
Name NumericspinButtonBathrooms
Alignment Center
Limit 1
Lower 1
Upper 4
Value 1
Enabled unselect

Unselect the Enabled check box of the numeric spin button from
its Settings notebook Control page. In "Apropertysearchparame-
terview" on page 283, you will draw connections to enable this con-
trol only when the corresponding CheckBoxBathrooms check box is
selected.

18 Add an Isetcanvas* part to the IMulticellcanvas* part and make
it span from cell (12, 2) to cell (12, 5) as shown in Figure 71 on page
189, E.

19 Add three IPushButton* parts to the Isetcanvas* part and set
their names as follows:

I PushButtonsearch
I PushButtoncancel
I PushButtonHelp

20 Change the fexf attribute of the three push buttons as follows:

I ~Search for PushButtonsearch
I ~Cancel for PushButtoncancel
I ~Help for PushButtonHelp

Notice the use of ~ for the key accelerator.

21 Open the settings notebook of PushButtonHelp and switch to the
Styles page. Set the hezp radio button to On to turn this regular
push button into a help push button. Set the 7topoj7?£erFocz/s radio
button to On to prevent the help push button from getting the
input focus when the user clicks on it. Close the settings notebook.

22 Add an IInfoArea* part to the IFramewindow*, E].

Chapter 7. Creating Visual Parts 195

AUpLoadview

Table 20. (Part 5 of 5) Building Apropertysearchparameterview

Step Action

23 Select the IMulticellcanvas* part and open the Tabbing and Depth
Order dialog box. Define six tabbing groups as follows (see "Tabbing
from One Part to Another" on page 152):
Group Tab Feature
X X CheckBoxArea

X CollectionviewArea
X X CheckBoxsize

X EntryFieldMinsize
X EntryFieldMaxsize

X X CheckBoxprice
X EntryFieldMinprice
X EntryFieldMaxprice

X X CheckBoxBedrooms
X NumericspinButtonBedrooms

X X CheckBoxBathrooms
X NumericspinButtonBathrooms

X X PushButtonsearch
X PushButtoncancel
X PushButtonHelp

Note: Reverse highlighted letters are keyed to Figure 71 on page 189.

Now you can save Apropertysearchparameterview. First, switch to
the Class Editor and fill in the Code ge7?ercbfjo7? f£Ze group box as fol-
lows:

I C++ header file (.hpp): vrpsrcv.hpp
I C++ code file (.cpp): vrpsrcv.cpp

Then, save the part.

AUpLoadview
AUpLoadview (Figure 74) is a dialog window that enables the user to
generate D82/2 import files. These import files can be sent to the real
estate server and then uploaded to update its database.

196 VisualAge for C++ for OS/2

AUpLoadview

Figure 74. AUpLoadview

To build AUpLoadview, follow the step-by-step instructions in
Table 21.

Table 21. (Part 1 of 3) Building AUpLoadview

Step Action

1 Start Visual Builder from the Services project (select Projecf i
VIsz4cIZ in the menu bar).

2 From the Visual Builder window, select Pcbrf i Ivezu... option.

3 Fill in the entry fields as follows:
Field Value
Class name AUploadview
Description General view to generate D82/2 import files
File name VRSERV
Part type visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

4 Open the settings notebook of the frame window and change the
style attributes as follows:
Attribute Setting
dialogBorder On
maximizeButton Off
minimizeButton Off
sizingBorder Off
systemMenu Off

Close the settings notebook. The window becomes a nonresizable
dialog box.

5 Change the IFramewindow* part title to Uploading Database.

6 Delete the Icanvas* part in the IFramewindow* part.

7 Add an IMulticellcanvas* part to the IFramewindow* part.

Chapter 7. Creating Visual Parts 197

AUpLoadview

Table 21. (Part 2 of 3) Building AUpLoadview

Step Action

8 Open the settings notebook of the IMulticellcanvas* part and con-figureitasfollows:

I Number of rows: 5
I Number ofcolumns: 3
I Expandable rows: 1, 3
I Expandable columns: 1, 3

Close the settings notebook.

9 Switch to the Color page and select the Colors radio button of the
Cozor sezec£Zo7? group box. Then select paleGray in the Cozor zjcIZz4esdrop-downlistbox.Closethesettingsnotebook.

10 Add an Isetcanvas* part, E, to cell (2, 2) of the IMulticellcanvas*
part. This set canvas will hold an icon and a static text control.

11 Add an IIconcontrol* part to the Isetcanvas* part.

12 Open the settings notebook of the IIconcontrol* part. Set the DLL
name to abticons and the resource ID to 531.

13 Add an IstaticText* part to the Isetcanvas* part and change itslabelstoGenerateImportFiles.

14 Open the settings notebook of the Isetcanvas* part, set its align-
ment to center (middle radio button), and adjust the width and
eight of the Mc}rgz7? and PczcZ group boxes as follows:
Group box Width Height
Margin 0 0
Pad 10 0

Close the settings notebook.

15 Add an IMulticellcanvas* part, E, to cell (4, 2) of the IMulticell-
Canvas* part and con figure it as follows:

I Number of rows: 3
I Number of columns: 5
I Expandable rows: none
I Expandable columns: 1, 3, 5

16 Add two IPushButton* parts to cells (2, 2) and (2, 4) of the IMulti-
Cellcanvas* part E and change their labels as shown in Figure 67
on page 178.

17 Change the push button names to PushButtonoK and PushBut-
toncancel.

18 Promote the buttonclickEvent event of pz/shbz/££o770K.

198 VisualAge for C++ for OS/2

ApropertyManagementview

Table 21. (Part 3 of 3) Building AUpLoadview

Step Action

19 Set PushbuttonoK as the default push button (set defaultButton
to On in the Styles page of the settings notebook).

20 Select the IMulticellcanvas* part, E, and open the Tabbing and
Depth Order dialog box. Set the Tab check boxes as follows (see
"Tabbing from One Part to Another" on page 152):

Group Tab Fe ature
X PushButtonoK
X PushButtoncancel

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 74 on page 197.

Now you can save AUpLoadview. First, switch to the Class Editor and
fill in the Cocze ge7?erc!£jo7t f£Ze group box as follows:

I C++ header file (.hpp): vrsuplv.hpp
I C++ code file (.cpp): vrsuplv.cpp

Then, save the part.

ApropertyManagementview
ApropertyManagementview (Figure 75) is the first window that the
user sees when accessing the Property subsystem. It calls the other
views you have built previously. By clicking on graphical push but-
tons, the user can select the following options:
I Create a property (Apropertycreateview)
I Search properties (Apropertysearchparameterview)
I Upload property tables (AUpLoadview)

Figure 75. ApropertyManagementview

Chapter 7. Creating Visual Parts 199

ApropertyManagementview

ApropertyManagementview derives from an IFramewindow part. It
is set to be nonresizable. Because each control is lined up along two
rows and three columns, the set canvas appears to be the canvas to
use to hold the different controls. In addition, the set canvas is a mini-
mum size canvas and supports multiple screen resolutions and font
settings. To ensure that the set canvas stays centered in the middle of
the client area, use a small multicell canvas of three rows and three
columns for the client area of the frame window. Set the multicell can-
vas top row, bottom row, left column, and right column to be expand-
able and place the set canvas in the middle of the multicell canvas: cell
(2, 2).

Using Graphic Push Buttons

An IGraphicpushButton part is a selection button for an action or
routing choice. The choice is represented by a graphical image on the
push button. The user can click on the push button to perform an
action. Usually, you can use an IGraphicpushButton part whenever an
action can be represented graphically.

To associate a graphical image with the push button, enter the DLL
7tcl77z,e in the DLL 7tcL77?e field and the resource ID in the Z3esoztrce ZcZ
field of the IGraphicpushButton General settings page (Figure 76).

Figure 76. IGraphicpushButton General Settings Page

200 VisualAge for C++ for OS/2

ApropertyManagementview

To build ApropertyManagementview, follow the step-by-step instruc-
tions in Table 22.

Table 22. (Part 1 of 2) Building ApropertyManagementview

Step Action

1 Start Visual Builder from the Property project (select Projecf i
VIsz4c!Z in the menu bar).

2 From the Visual Builder window, select Pcbrf i Ivezu... option.

3 Fill in the entry fields as follows:
Field Value
Class name ApropertyManagementview
Description Main window for the property subsystem
File name VRPROP
Part type visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

4 Open the settings notebook of the frame window and change the
style attributes as follows:
Attribute Setting
dialogBorder On
maximizeButton Off
minimizeButton Off
sizingBorder Off

Close the settings notebook. The window becomes a nonresizable
dialog box. Notice that we keep the system menu to enable the user
to close the window.

5 Delete the Icanvas* part in the IFramewindow* part.

6 Add an IMulticellcanvas* part to the IFramewindow* part and
con figure it as follows:

I Number of rows: 3
I Number ofcolumns: 3
I Expandable rows: 1, 3
I Expandable columns: 1, 3

7 Change the IFramewindow* part title to Property Management.

Chapter 7. Creating Visual Parts 201

ALogonview

Table 22. (Part 2 of 2) Building ApropertyManagementview

Step Action

8 Add an Isetcanvas* part to cell (2, 2) of the IMulticellcanvas* part
and con figure it as follows:
Fi el d Value
Deck orientation Horizontal
Pack Type Even
Deck count 2
Margin width 20
Margin Height 20
Pad width 30
Pad Height 20
Alignment Centered

Use the Apply push button of the settings notebook to adjust mar-
gins and pads before closing the notebook to undergo the changes.

9 Add three IGraphicpushButton* parts to the client area and change
their settings as follows (the IGraphicpushButton* part is located
in the Bzt#o7?s category):
Button Subpart DLL Resource Id
Create GPushButtoncreate abticons 106
Search GPushButtonsearch abticons 3 06
Upload GPushButtonupload abticons 51

10 Add three IstaticText* parts and change their fe#£ attributes to
Create, Search, and Upload.

Note: Because the number of decks in the set canvas defines an implicit
order, you must add the three graphic push buttons first, then the three
static text controls.

11 Add an IInfoArea* part to the IFramewindow* part.

Now you can save ApropertyManagementview. First, switch to the
Class Editor and fill in the Cocze ge7iera£Zo7i fEze group box as follows:

I C++ header file (.hpp): vrpmngv.hpp
I C++ code file (.cpp): vrpmngv.cpp

Then, save the part.

ALogonview
ALogonview (Figure 77) is a general logon view that can be used to
authenticate a user. When users start the application, they must first
connect to the database to access the different subsystems. ALogon-
View prompts users for their user ID and password. This information

202 VisualAge for C++ for OS/2

ALogonview

is passed to an IDatastore part to establish the connection (see
Chapter 6, "Mapping Relational Tables Using Data Access Builder," on
page 127).

ri:i:-i:jf'ij3-.iei':.:-;.-.,,,::-.:j:.:I,'::'-.-,,I::-.::-:;:.:-.;.::-.::-.I,.;,:,."I..--'i.,-..;;
-i:,..;.::.,-.:..;;

•as,.£RE..-'...*..*

`!. i--!^^,, . . A S`. `i .` . .

•'.'_.'.`.'.-.'.-.'.'.'RE

#'Z;:i;

'.-'..'..'..'..'..'.,,,'..:¥::%%#¥¥¥seli!#*RE*f

-..-..-..----..----,-.

>;.S

mare.....I......i........i...;......:

Figure 77. ALogonview

Notice that this view is simple. The only peculiarity is an event han-
dler, which you attach to each entry field to force the user input to be
in uppercase. We explain how to construct your own event handler in
"Event Handler" on page 220.

To build ALogonview, follow the step-by-step instructions in Table 23.

Table 23. (Part 1 of 3) Building ALogonview

Step Action

1 Start Visual Builder from the Common project (select Pro/.ecf i
VIsztc£Z in the menu bar).

2 From the Visual Builder window, select Pc!7.i i Ivez#.. . option.

3 Fill in the entry fields as follows:
Field Value
Class name ALogonview
Description General purpose view to log on
File name VRCOMM
Part type visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

Chapter 7. Creating Visual Parts 203

ALogonview

Table 23. (Part 2 of 3) Building ALogonview

Step Action

4 Open the settings notebook of the frame window and change the
style attributes as follows:
Attribute Setting
dialogBorder On
maximizeButton Off
minimizeButton Off
sizingBorder Off
systemMenu Off

Close the settings notebook. The window becomes a nonresizable
dialog box.

5 Change the IFramewindow* part title to Logon Window.

6 Delete the Icanvas* part in the IFramewindow* part.

7 Add an IMulticellcanvas* part to the IFramewindow* part and
con figure it as follows:

I Number of rows: 6
I Number of columns: 3
I Expandable rows: 3, 5
I Expandable columns: 1, 3

8 Add an IstaticText* part to cell (2, 2) of the IMulticellcanvas* and
change its label to Note: the password will not display.

9 Add an Isetcanvas* part in cell (4, 2) of the IMulticellcanvas*
part and change the setting of its attributes as follows:
Attribute Setting
Deck orientation Vertical
Pack 'fype Even
Deck count 2

10 Add two IstaticText* parts to the Isetcanvas* part and change
their labels to User ID and Password.

11 Add two IEntryField* parts and change their names to EntryFiel-
duserlD and EntryFieldpassword and their limit to 10. Reset
their size to the default size, using the Reset to default size
action from their pop-up menu.

12 Promote each fe#£ attribute of each IEntryField* part. Because
ALogonview will be reused in other parts, you must promote these
features to have access to the logon information.

204 VisualAge for C++ for OS/2

ALogonview

Table 23. (Part 3 of 3) Building ALogonview

Step Action

13 Add an IMulticellcanvas* part to cell (6, 2) of the first IMulticell-
Canvas* part and configure it as follows:

I Number of rows: 3
I Number of columns: 3
I Expandable rows: none
I Expandable columns: 1, 3

14 Add three IPushButton* parts and the new IMulticellcanvas*
part in cells (2, 2), (2, 4), and (2, 6) and change their fexf labels,respectively,toOK,Cancel,andHelp(Figure77onpage203).

15 Change the name of the IPushButton* parts to PushButtonoK,
PushButtoncancel, and PushButtonHelp.

16 Open the settings notebook of EntryFielduserlD and, on the Han-
dlers page, add an UppercaseKbdHandler to the handler list box.
Close the settings notebook.

17 Open the settings notebook of EntryFieldpassword and, on the
Handlers page, add UppercaseKbdHandler. Then switch to the
Styles page and set the I/77reczdclbze style to On. Close the settings
notebook.

18 Open the settings notebook of PushButtonHelp and switch to the
Styles page. Set the hezp radio button to On. Set the 7iopoz72,£erFo-
czts radio button to On. Close the settings notebook.

19 Set PushButtonoK as the default push button (set defaultButton
to On in the Styles page of the settings notebook).

20 Select the IFramewindow* part and open the Tabbing and Depth
Order dialog box. Set the tabbing groups as follows:
Group Tab Feature
X X EntryFielduserlD

X EntryFieldpassword
X X PushButtonoK

X PushButtoncancel
X PushButtonHelp

Close the dialog box.

Now you can save ALogonview. First, switch to the Class Editor and
fill in the Code ge7?erc££Zo7? f£Ze group box as follows:

I C++ header file (.hpp): vrclogv.hpp
I C++ code file (.cpp): vrclogv.cpp

Then, save the part.

Chapter 7. Creating Visual Parts 205

ABealsettingsview

ARealsettingsview
ARealsettingsvlew (Figure 78) enables the user to update the
Visual Realty application's settings. The settings consist of the direc-
tory information where files are uploaded or downloaded from the
server:

Movie path The path where the video files are placed when
they are downloaded from the server

Upload path The path where the export files are produced to be
uploaded to the server

Download path The path where the import files are placed when
they are downloaded from the server

Figure 78. ARealsettingsview

An Iprofile part, which stores the directories information, works in
tandem with ARealsettingsview. The use of Iprofile part is described
in "ARealsettingsview" on page 305.

ARealsettingsview is not reused in other parts of the application, so
you do not have to promote its features.

To build ARealsettingsview, follow the step-by-step instructions in
Table 24.

Table 24. (Part 1 of 3) Building ARealsettingsview

Step Action

1 Start Visual Builder from the Common project (select Projecf i
VIsz/c!Z in the menu bar).

2 From the Visual Builder window, select Pczrf i Ivezu... option.

206 VisualAge for C++ for OS/2

Apealsettingsview

Table 24. (Part 2 of 3) Building ARealsettingsview

Step Action

3 Fill in the entry fields as follows:
Field Value
Class name ARealsettingsview
Description Application settings view
File name VRCOMM
Part type visual part
Base class IFramewindow

Click on the Open push button. An IFramewindow* part is dis-
played on the free-form surface.

4 Change the IFramewindow* part title to Visual Realty Settings.

5 Delete the Icanvas* part in the IFramewindow* part.

6 Add an IMulticellcanvas* part in the IFramewindow* part.

7 Open the settings notebook of the IMulticellcanvas* part and con-
figure it as follows:

I Number ofcolumns: 5
I Number of rows: 10
I Expandable columns: 4
I Expandable rows: 8

Close the settings notebook.

8 Add an IInfoArea* part to the IFramewindow* part, E.

9 Add an Isetcanvas* part tQ the IMulticellcanvas* part as shown
on Figure 78 on page 206, E.

10 Add two IPushButton* parts to the Isetcanvas* part and set their
names as follows:

I PushButtonoK
I PushButtoncancel

11 Change their labels as follows:

I ~OK for pushButtonoK
I ~Cancel for PushButtoncancel

Notice the use of ~ for the key accelerator.

12 Add three IEntryField* parts and change their names to Entry-FieldMovie,HntryFieldupload,andEntryFieldDownload, E,

E, I. Set their limit to 50 characters.

Chapter 7. Creating Visual Parts 207

ABealMainview

Table 24. (Part 3 of 3) Building ARealsettingsview

Step Action

13 Set PushbuttonoK as the default push button (set defaultButton
to On in the Styles page of the settings notebook).

14 Select the IFramewindow* part and open the Tabbing and Depth
Order dialog box. Set the tabbing groups as follows:
Group Tab Feature
X X EntryFieldMovie

X EntryFieldupload
X EntryFieldDownload

X X PushButtonoK
X PushButtoncancel

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 78 on page 206.

Now you can save ARealsettingsview. First, switch to the Class Inter-
face Editor and fill in the Code ge7?ercL£Zo7t f£Ze group box as follows:

I C++ header file (.hpp): vrcsetv.hpp
I C++ code file (.cpp): vrcsetv.cpp

Then, save the part.

AF3ealMainview

ARealMainview (Figure 79) is the application main view. From this
view, the user can log on to the database and access each subsystem.

Figure 79. ARealMainview

208 VisualAge for C++ for OS/2

ApealMainview

ARealMainview derives from an IFramewindow part. It is built from
the parts that you already know: IMulticellcanvas, Isetcanvas,
IGraphicpushButton, and IstaticText. The user can resize the win-
dow; the IMulticellcanvas is used intensively to enable the controls to
distribute evenly.

To build ARealMainview, follow the step-by-step instructions in
Table 25.

Table 25. (Part 1 of 3) Building ARealMainview

Step Action

1 Start Visual Builder from the Visual Realty project (select Project i
VIsztcIZ in the menu bar).

2 Create a visual part by using the following settings:
Fi eld Value
Class name ARealMainview
Description Application main view
File name VRMAIN
Part type visual part
Base class IFramewindow

3 Change the title of the IFramewindow* part to Visual Realty.

4 Add an IInfoArea* part to the IFramewindow* part.

5 Delete the Icanvas* part in the IFramewindow* part.

6 Add an IMulticellcanvas* part in the IFramewindow* part and
configure it as follows:

I Number of columns: 3
I Number of rows: 5
I Expandable columns: all
I Expandable rows: all

7 Add three IMulticellcanvas* parts in the IMulticellcanvas* part
already in place. The first multicell canvas contains the application
title; the second, one graphic push button; and the third, a set can-
vas with the graphic push buttons and their associated static text
controls.

Chapter 7. Creating Visual Parts 209

ApealMainview

Table 25. (Part 2 of 3) Building ARealMainview

Step Action

8 Con figure each IMulticellcanvas* part as follows:

I IMulticellcanvas* part E
-Number of rows: 3
-Number ofcolumns: 3
- Expandable rows: 1, 3
- Expandable columns: 1, 3

I IMulticellcanvas* part E
-Number of rows: 3
-Number ofcolumns: 3
- Expandable rows: 1, 3
- Expandable columns: 1, 3

I IMulticellcanvas* part E
-Number of rows: 3
- Number of columns: 3
- Expandable rows: 1, 3
- Expandable columns: 1, 3

9 Add an IstaticText* part to cell (2, 2) of the IMulticellcanvas* part,E,andchangeitsfe#£attributetoVisualRealtyApplication.This

IstaticText* part constitutes the main title.

10 Change the font of the main title to suit your needs. (In Figure 79 on
page 208, the font is set to Times New Roman Bold, size 18. The res-
olution is SVGA.)

11 Add an Isetcanvas* part to cell (2, 2) of the IMulticellcanvas*part,E,andchangethesettingofitsattributesasfollows:

Attribute Setting
Pack Type Even
Deck count 2
Pad width 20
Alignment Center

12 Add five IGraphicpushButton* parts: one to cell (2, 2) of the IMulti-
Cellcanvas* part, E, and four to the Isetcanvas* part.

210 VisualAge for C++ for OS/2

AF`ealMainview

Table 25. (Part 3 of 3) Building ARealMainview

Step Action

13 Change the IGraphicpushButton* parts settings as follows:
Button Subpart DLL Res. id Enabled

i:;y:e::cr:t:es §!¥¥!!§:§¥eL:crety :¥;;i§ i;; i;i;i;§!
The last four graphic push buttons must be set to disable bydeselectingtheEnabledcheckboxontheControlpageoftheir set-tingsnotebook.Thispreventstheuserfromaccessingasubsystemaslongasthereisnodatabaseconnectionestablished(see"LoggingontotheDatabase''onpage310).Whenadatabaseconnectionis

established, these graphic push buttons are set enable.

14 Add four IstaticText* parts to the Isetcanvas* part and change
their label attributes as shown in Figure 79 on page 208.

15 Set the graphic push button logon as the default push button.

16 Select the IFramewindow* part and open the Tabbing and Depth
Order dialog box. Set the tabbing groups as follows:
Group Tab Feature
X X GPushButtonLogon
X X GPushButtonproperty

X GPushButtonBuyer
X GPushButtonsale
X GPushButtonservice

Close the dialog box.

Note: Reverse highlighted letters are keyed to Figure 79 on page 208.

Now you can save ARealMainview. Switch to the Class Editor and fill
in the Code ge7?erci£Zo7? f£Ze group box as follows:

I C++ header file (.hpp): vrmain.hpp
I C++ code file (.cpp): vrmain.cpp

Then, save the part.

Congratulations! You have finished building your visual parts. In
Chapter 8, "Creating Nonvisual Parts," on page 213 you will learn
how to build nonvisual parts. Remember that visual programming
does not imply no programming at all!

Chapter 7. Creating Visual Parts 211

ABealMainview

212 VisualAge for C++ for OS/2

ng
sual Parts

Nonvisual parts represent application objects that the user cannot see
at run time. These objects can be divided into two main categories:
business objects and technical objects.

Business objects support the business object model of the application.
For example, Property is a business class whose instances are busi-
ness objects. You can access the views that display some of their fea-
tures (Apropertyview displays the attribute values of Property).

Technical objects support the middleware layer of the application.
They can be, for example, transaction management objects, security
management objects, or database access objects. For the sample appli-
cation, all Data Access Builder objects can be considered as technical
objects. They provide the application with database access. Some-
times, technical objects can be used for more basic tasks, such as vali-
dating user input or handling the appearance of an object according to
its contents. Event handlers are an example of such technical objects.

213

AMarketinglnfo

Basically you can handle two kinds of nonvisual parts with Visual
Builder: the full, enabled nonvisual part and the class interface part.
The full, enabled nonvisual part is always subclassed from the
IstandardNotifier class, which provides a concrete implementation of
the notifier protocol in the notification framework (see Chapter 10, "If
You Want to Know More about Visual Builder..., " on page 323). This
part can notify other parts, and connections can be drawn from and to
it.

The class interface part can inherit from any class but does not sup-
port the notification protocol. This nonvisual part cannot notify other
parts. Creating a class interface part rather than a nonvisual part is
especially useful when you do not want to alter the legacy source code
of your own C++ classes that you want to use with Visual Builder. (see
Chapter 10, "If You Want to Know More about Visual Builder..., '' on
page 323 for more information about using your legacy code with
Visual Builder). However, creating a class interface part has two
restrictions: Because you do not integrate any code to enable the noti-
fication framework, you cannot use a class interface part as a source
for a connection. Also, if a class interface part is the target for an
attribute-to-attribute connection, the connection is unidirectional
(only the target side is updated). For a complete overview of the notifi-
cation framework and more information about how to implement a
nonvisual part, refer to Chapter 10, "If You Want to linow More about
Visual Builder ..., " on page 323.

In the sections that follow, we describe how to build both full, enabled
nonvisual parts and class interface parts. First you will implement the
AMarketinglnfo nonvisual part, which belongs to the business object
category. It holds business rules that apply to the properties in the
context of our application. Then you will build a class interface part,
the UppercaseKbdHandler event handler.

AMarketinglnfo

The AMarketinglnfo part (see the design object model in Figure 41 on
page 102) contains some attributes that are not stored in the data-
base; Przcepersg# (price per square foot) is one of them. It is calcu-
lated from the Price and size attributes of the Data Access Builder
part, Marketing_info, by using the following formula: Prl. cepersqft =
Prl.ce/Sl.ze. These attributes are called czerzz/ed attributes because
their value can be derived from the values of other attributes.

214 VisualAge for C++ for OS/2

AMarketinglnfo

You can calculate the value of such attributes in two ways:
I Extend the AMarketinglnfo nonvisual part by subclassing it. In

effect, the source code that Data Access Builder generates is not
intended to be edited directly. You would lose all of your changes if
you regenerated the code from the same class.

I Build a separate nonvisual part to hold the derived attributes and
calculate their value from the AMarketinglnfo part.

With the second way of calculating derived attributes, you do not have
to associate the business rules with any implementation choice; that
is, you do not have to store the information in a relational database
such as DATABASE 2 0S/2. This is the calculation we chose. Building
a nonvisual part constitutes an alternative to the custom logic connec-
tion that we describe later (see "Using Custom Logic" on page 249).

The AMarketinglnfo part consists of seven attributes and their associ-
ated get and set methods:
I price, the property price from the Data Access Builder part
I co77?77izsszo7?RCIfe, the commission rate from the Data Access

Builder part (percentage of the total sale)
D dozu7tpay777e7t£RCLfe, the deposit rate the buyer has to pay to hold

the property (percentage of the total price)
I size, the property size from the Data Access Builder part
I com77tzssjo7t, the amount of commission the agent earns in selling

the property
I prjcepersg#, the property price per square foot
D dozu7tpay77ie7tf , the deposit the buyer has to pay to hold the prop-

erty

The first three attributes are updated according to the value of the
last four attributes. In addition, each time one of these attributes is
updated, all of the others are updated accordingly.

To create the AMarketinglnfo nonvisual part, assuming Visual
Builder has been started from the Property project folder:

1. Select the Ivezu option from the Pcbrf pull-down menu.

2. Fill in the Czclss IVci77}e, Descrzp£ZoJt, and Fjze 7}ci7ne fields, as
shown in Figure 80.

3. Select IVoJ®tJfsz4ciz parf in the Pclrf type field.

4. Click on the Open push button; the Part Interface Editor is loaded
for editing the part.

Chapter 8. Creating Nonvisual Parts 215

AMarketinglnfo

Figure 80. Creating AMarketinglnfo Nonvisual part

To add przcepersgff as a new attribute for the nonvisual part:

1. Enter the attribute name in the corresponding field.

2. Select cZozibze as the return type of the pricepersqft get method.

3. Click on the Defaults push button. The different fields are filled
in with the default member function prototypes for this attribute.
Because the value of this attribute is updated by the set member
function of the price attribute, you can erase the set member func-
tion of pricepersqft.

4. Fill in the Descrzp£Zo7? field with a meaningful comment.

5. Click on the Add push button.

You have now added the przcepersg# attribute to the part. You can
repeat the process for the co77i77tzsszo7t and doztJ7tpay77te7tf attributes.
Refer to Table 26 for more information.

Because the other attributes have a set member function, you can add
them by using the default member function prototypes. Therefore, you
can directly click on the Add with defaults push button.

Table 26. (Part 1 of 2) Table Attributes

Name Type Get Function Set Function Event ID

price double virtual double price() virtual j"arketing- priceld
const Info& setprice(doubleaprice)

216 VisualAge for C++ for OS/2

AMarketinglnfo

Table 26. (Part 2 of 2) Table Attributes

Name Type Get Function Set Function Event ID

comnrission- double virtual double virtual AMarketing- commission-

Rate commissionRate() const Info& setcommission-Rate(doubleacommissionRate) Rateld

downpayment- double virtual double down- virtual AIarketing- downpayment-
Rate PaymentRate() const Info& setDown-PaymentRate(doubleaDownpaymentRate) Rateld

size double virtual double size() virtual AMarketing- sizeld
const Info& setsize(doubleasize)

pricepersqft double virtual double priceper-Sqft()const pricepersqftld

commission double virtual double commis-sion()const commissionld

downpayment double virtual double down- down-
Payment() const Paymentld

Once you have registered all attributes and their associated methods,
switch to the Class Editor and fill in the user file fields:
D User .hpv file: vrpmrkt.hpv
I User .cpv file: vrpmrkt.cpv

You are ready to generate the code:

1. Select ScILJe cI7?d Ge7terc!£e i Pcbrf soL4rce to generate the part
source code.

2. Select Scbz;e cb7?d Ge77ercbfe i Fecbfz4re soz/rce to generate the code
for every get and set method registered.

Chapter 8. Creating Nonvisual Parts 217

AMarketinglnfo

Several files are generated:
I vrpmrkt.h, constant declaration for the class
I vrpmrkt.hpp, class declaration (this file includes vrpmrkt.hpv)
I vrpmrkt.cpp, class definition (this file includes vrpmrkt.cpv)
I vrpmrkt.hpv, attributes and member functions declaration
I vrpmrkt.cpv, member functions definition
I vrpmrkt.rci, resource file

To refine the part and update the pricepersqft, commission, and
downpayment attributes according to the value of the other
attributes, you must edit the vrpmrkt.cpv file. Use the LPEX editor,
provided with Visua]Age for C++, or your favorite editor to update the
file, as shown in Figure 81.

218 VisualAge for C++ for OS/2

AMarketinglnfo

// Feature source code generation begins here. . .
//........................

AMarketinglnfo& AMarketinglnfo: : setprice (double aprice)
(

if (! (iprice == aprice))
(

iprice = aprice;
if (isize != 0) (

ipricepersqft = Istring(iprice / isize) ;
icommission = Istring(icommissionRate *. iprice / 100) ;
iDownpayment = Istring(iDownpaymentRate * iprice / 100) ;

)
else

ipricepersqft = "Size is not informed.";
notifyobservers (INotificationEvent (AMarketinglnfo: :priceld, *this)) ;
notifyobservers (INotif icationEvent (AMarketinglnfo : : pricepersqftld,

*this)) ;
notifyobservers (INotif icationEvent (AMarketinglnfo : : commissionld,

*this)) ;
notifyobservers (INotif icationEvent (AMarketinglnfo : : downpaymentld,

*this)) ;

) // endif
return *this;

)

//..............

AMarketinglnfo& AMarketinglnfo : : setcommissionRate (double acommissionRate)
(

if (! (icommissionRate == acommissionRate))
(

icommissionRate = acommissionRate,.
if (iprice != 0)

icommission = Istring(icommissionRate * iprice / 100);
else

icommission = "Price is not informed.";
notifyobservers (INoti ficationEvent (AMarketinglnfo : : commissionRateld,

*this)) ;
notifyobservers (INotif icationEvent (AMarketinglnfo : : colrmissionld,

*this)) ;

) // endif
return *this;

)

//..................

AMarketinglnfo& AMarketinglnfo : : setDownpaymentRate (double aDownpaymentRate)
(

if (! (iDownpaymentRate == aDownpaymentRate))
(

iDownpaymentRate = aDownpaymentRate,.
if (iprice != 0)

iDownpayment = Istring(iDownpaymentRate * iprice / 100) ,.

Figure 81. (Part 1 of 2) Marketinglnfo Source Code Detail

Chapter 8. Creating Nonvisual Parts 219

Event Handler

else
iDownpayment = "Price is not informed";

noti fyobservers (INoti f icationEvent (AMarketinglnfo : : downpaymentRateld,
*this)) ;

) // endif
return *this;

)

//................

AMarketinglnfo& AMarketinglnfo: :setsize(double asize)
(

if (! (isize == asize))
(

isize = asize;
if (iprice != 0)

ipricepersqft = Istring(iprice / isize);
else

ipricepersqft = "Price is not informed.";
notifyobservers (INotificationEvent (AMarketinglnfo: : sizeld, *this)) ;
noti fyobservers (INoti f icationEvent (AMarketinglnfo : : pricepersqf tld,

*this)) ;

) // endif
return *this;

)

// Feature source code generation ends here.

Figure 81. (Part 2 of 2) Marketinglnfo Source Code Detail

Only the set member function for the price, size, doz#7}Payme7t£Rcbfe,
and co77?mzsszo7tz3cife attributes are updated to calculate the other
attributes that depend on them. In "Connecting a Nonvisual Part to a
Visual Part" on page 233, the Marketinglnfo part is connected, by
attribute-to-attribute connections, to the Marketing page of
Apropertyview. The contents of each entry field on this page are
updated according to the value of the associated attribute. To keep the
contents of the entry fields up to date, a notification must be sent to
the attribute-to-attribute connections each time the value of an
attribute changes. Considering a connection as an obsert;er, the notifi-
cation is triggered by the notifyobservers() method, which you must
call in the get method of each attribute (see Chapter 10, "If You Want
to Know More about Visual Builder ..., " on page 323). The notifications
enable a global change on the Marketing page of Apropertyview when
necessary.

Event Handler

The parts you can create with Visual Builder provide standard behav-
iors that should meet most of your needs. At times, however, you may
want to use an event handler to modify or extend the default behavior.

Below, we describe how to build a simple event handler to convert to
uppercase letters the input that the user types in ALogonview to
uppercase letters (see "ALogonview" on page 202) and "wrap" it as a

220 VisualAge for C++ for OS/2

Event Handler

class interface part to reuse it with Visual Builder. For more informa-
tion about building event handlers, refer to the Ope7t Czciss LzbrcLry
User's Guide.

Handlers are registered with parts and set up in the Handlers pages
of the settings notebook. You can attach several handlers to the same
part. They will be executed in the reverse order in which they are
attached to the part.

The management of events and event handlers is based on the IBM
Open Class Library architecture. Basically, the architecture uses
events and handlers to encapsulate the message architecture of OS/2
PM in an object-oriented way. PM messages are sent as event objects
to the window or control that received the event. The window then
invokes the handler attached to it, passing the event object as a
parameter. The handlers are called sequentially, with the most
recently added handler called first. When an event handler completes
the event processing, it returns a Boolean value of TRUE. If none of
the handlers can process the event, it is passed up to the owner chain.

The distinction between window classes and handler classes lets you
separate the event handling logic from the rest of the application.
Thus, you can reuse the logic in several applications. For example, you
can build an event handler that verifies the social security number
format whenever an entry field accepts the social security number.
You define this handler only once. Each time you want to use an entry
field to enter the social security number information, you can attach
the event handler to the entry field.

You can use the IHandler part to control the event handler action on a
specific part.

You build an event handler in two steps:

1. Write the code of your event handler class.
• Derive your event handler class from one of the predefined

event handler classes. If none of them is suitable for your
needs, you still can derive your handler from the IHandler
part.

• Each handler class has one or more virtual functions that are
called to process the events. You provide your own function to
override these virtual functions and tailor its logic to your
needs.

• Compile the new event handler class and create a library that
you will link later on when building the application.

2. Convert your event handler class to a class interface part that you
can use with Visual Builder.

Chapter 8. Creating Nonvisual Parts 221

Event Handler

Writing the Code for Your Event Handler class

To write the code for your UppercaseKbdHandler class, you first have
to choose the handler class from which to derive your own event han-
dler. Because the event handler is to be used when entering informa-
tion from the keyboard, it seems natural to choose IKeyboardHandler
as the class from which to derive your own event handler. Of course,
you also could choose an event handler associated with the editing
process, such as IEditHandler, but you would not be able to reuse it
with other types of controls, such as a list box. In our example, you
derive UppercaseKbdHandler from IKeyboardHandler (Figure 82),
and you overload the virtual function, characterKeypress, to meet
your needs (Figure 83).

#ifndef KBDHDR
#def ine KBDHDR
/ / * * * * * *_* * * * * * *_* * * * * * * * * * * * * *
// Reusable Handlers -Keyboard Handler
//
// Copyright (C) 1994, Law, Leong, Love, 0lson, Tsuji.
//
// Adapted for use with VisualAge C++ by: Peter Uakab
//
// All Rights Reserved.
/ /*********+**********
#include <ikeyhdr. hpp>
#include <istring.hpp>
#include <iwindow. hpp>

#ifndef NO DEFAULT LIBS
#pragma library (" kbdhdr . lib")

#endif

// Keyboard handler example to convert lowercase characters
// to uppercase as the user types.
class UppercaseKbdHandler : public IKeyboardHandler
(
protected:

virtual Boolean characterKeypress (IKeyboardEvent& event) ;
in
#endif /* _KBDHDR_ */

Figure 82. UppercaseKBDHandler Header File

You overload the characterKeypress function to ensure that every
character typed from the keyboard is converted to an uppercase char-
acter.

222 VisualAge for C++ for OS/2

Event Handler

#include "kbdhdr.hpp"

Boolean UppercaseKbdHandler : : characterKeypress (IKeyboardEvent& event
(

Boolean dontpasson = false,.
Istring strchar = event.mixedcharacter() ;

if (strchar.issBCS() && strchar.isLowercase())
(

// Generate the uppercased character.
/* Single-byte 'a'-'z'.*/

IEventparameter2 param2 (strchar.uppercase() [0] ,
event .parameter2 () .number2 ()) ;

// Only change the character to uppercase.
event .window () ->sendEvent (Iwindow: : character,

event .parameterl () ,
param2) ;

event.setResult(true) ;
dontpasson = true;

)

return dontpasson;

Figure 83. UppercaseKBDHandler Definition

Creating a Class Interface Part from Your Event Handler Class

To create the UppercaseKbdHandler class interface part, you must
create the definition of that part in Visual Builder. Actually, creating a
keyboard handler part in Visual Builder is very simple, because a key-
board handler does not have any features. Visual Builder must have
the following information to use a keyboard handler:
I Name of the header file where the keyboard handler class is

declared, namely, kbdhdr.hpp
D Macro defined in the header file to avoid multiple inclusions,

namely, _REDHDR
I Name of the library where the definition of the keyboard handler

definition is stored. The library name is used at link time. The
simplest way of handling the library is to declare it in the source
code with the #pragma library statement:
#i.fndef N0 DEFAULT LIBS

#pragmTli.Erary("kEdhdrTi.b")
e n d 1. f

The linker uses this information to retrieve the name of the
library it needs to build the application.
If you do not use the #pragma library statement, you can specify
the name of the library in the linking options of the project where
you are using the keyboard handler.

Chapter 8. Creating Nonvisual Parts 223

Event Handler

The simplest and fastest way of creating the UppercaseKbdHandler
class interface part is to write a Visual Builder export file (or VBE file)
and import it in Visual Builder. A VBE file is a flat file that you use to
describe a part and its interface. Use your favorite editor to create the
KBDHDR.VBE file with the following contents:

//VBBegi.npartlnfo: UppercaseKbdHandler
//VBparent: IKeyboardHandler
//VBIncludes: ''kbdhdr.hpp" _KBDHDR

//VBpartDataFi.le: KBDHDR.VBB

//VBComposerlnfo: class,204,dde4vr30
//VBpreferredFeatures: thi.s
//VBEndpartlnfo: UppercaseKbdHandler

To import the KBDHDR.VBE file in Visual Builder, start Visual Builder
and select the FjzeiJ77apor£ Pcir£ J7?for77}cIfjo7?... menu item. Enter the
information as shown in Figure 84.

Figure 84. Visual Builder: Importing kbdhdr.vbe Part Information File

Visual Builder creates a VBB file (kbdhdr.vbb) from the information
stored in the VBE file. You are now ready to use the Uppercase-
KbdHandler event handler.

Using Your Keyboard Handler

Before using the event handler, you must import it as a nonvisual part
in Visual Builder and open the settings of the part to which you want
to attach the handler. Select the Handlers page and enter the name of
the handler you want to attach to the part. If several handlers already
have been attached to this part, you can choose the order in which you
want your handler to be added to the handler list with the Add
before or Add after push buttons (see Figure 60 on page 160). The
handlers are activated according to the order in the list.

224 VisualAge for C++ for OS/2

Event Handler

You can use the nonvisual part, IHandler, to control the activation and
deactivation of the handler.

Visual Builder provides you with an IHandler part to process a specific
event of a part. The IHandler part attributes and actions are:
I Attribute

> enabled: indicates whether or not the handler is enabled
D Actions

> disable: disables the handler so that it does not process win-
dow events

> start: attaches the handler to the Iwindow object
> stop: detaches the handler from the Iwindow object

As an example, suppose you want to attach an event handler to an
entry field or detach an event handler from an entry field when click-
ing on a specific push button (Figure 85):

lHandler UppercElseKbdHand|er

Figure 85. Simple Application with Handler

1. Add an IHandler variable part to the free-form surface, E.
2. Add the event handler part you built to the free-form surface, E].
3. Connect the ffafs of the event handler to the £JDfs of the variable, E.
4. Connect the buttonclickEvent event of the Ac£ZzjcLfe push button

:iftsh:fstthaerte:tc:;o:e::tt:et::::fieerctvi::iaabsl:i:rrt;I,etaenr#
ass the
In this

way, when the push button is clicked, the event handler is
attached to the entry field.

Chapter 8. Creating Nonvisual Parts 225

Event Handler

5. Connect the buttonclickEvent event of the Decfcfjzjc!£e push but-
ton to the stop action of the IHandler variable part, E, and pass
the fhfs of the entry field to the connection as a parameter, E]. In
this way, when the push button is clicked, the event handler is
detached from the entry field.

So far, you have built all of the parts that you need to make up the
Property subsystem; that is, the parts that constitute the static struc-
ture of the subsystem. Now, you need some "glue," so that the parts
can communicate with each other; that is, you must build the dynamic
structure of the subsystem by connecting the parts. That is what you
do in Chapter 9, "Connecting the Parts," on page 227.

226 VisualAge for C++ for OS/2

cling dihe

Before you begin this chapter we suggest that you refer to "Using
Visual Builder" on page 27 for a complete description of connections.
From now on, we assume that you have enough knowledge to distin-
guish one connection from another.

To help you implement the connections between parts, we use the CRC
cards, the static and the dynamic model refined at the design level
(see Chapter 4, "Designers at Work," on page 83).

In this chapter, we show you how to connect the parts, and we explain
the various connections. You refine each view in a bottom-up order
according to the view hierarchy (Figure 53 on page 145). For each view
we provide step-by-step guidelines to help you add the necessary sub-
parts and build the connections to implement the part's logic. We
strongly recommend that you name your subparts with the names
that are shown in the figures in this chapter.

227

Apropertyview

Attention

For every part to be refined, you must locate the corresponding Work-
Frame/2 project and open the associated VBB file-by double-clicking with
your left mouse button-to start Visual Builder.

Apropertyview
Four groups of connections are built in Apropertyview:
a A group that enables the user to select a video file (Figure 86 on

page 229)
I A group that enables the user to play a video file (Figure 86 on

page 229)
I A group that enables the user to edit within the multiple-line edit

(MLE) control of the description page (Figure 87 on page 232)
D A group that updates the marketing page according to the busi-

ness logic stored in the AMarketinglnfo nonvisual part (Figure 88
on page 234)

We explain these connections below.

Selecting a Video File

In the Visual Realty application, the user selects a video file by click-
ing on the FZ77cZ... push button (see Figure86). Notice that, in
"Apropertyview" on page 156, the FjzeIVcI77?e entry field is set to read-
only, so the user must click on Fj7td... to select a file. This limiting con-
dition prevents the user from mistyping the video file name, path
name, or both.

Visual Builder provides the IVBFileDialog part for selecting files. It is
a "wrapper" of the standard file dialog window available in PM.

228 VisualAge for C++ for OS/2

Apropertyview

a,-~,---,,~--,-.I
•,,-,,

i.T...T _ _ __ _ _ r .

FileName -,
•}==-»-.±-I-*-.....±-::---:----..-...............

--,,,'J,,,,-

}tHi,-

_--..-.---.--....:\..

•`-- :.I

--

i?

1ri:

`ELE n

VBFileDidlogvideo

MMDigltalvld:9,'''

----U,`,,,,,,

Figure 86. Connections for Selecting a Video File

Follow the step-by-step Instructions in Table 27 to implement the
selection of a video file.

Table 27. (Part 1 of 2) Implementing a Video File Selection

Step Action

1 Open the Apropertyview part.

2 Switch to the Video page.

3 Add an IVBFileDialog* part on the free-form surface, E (IVBFile-
Dialog part is located in the Ofher category).

4 Open the settings notebook of IVBFileDialog and set the values as
follows:

Field Value

Title Digital video
File name *.AVI

These values tailor the file dialog box and allow filtering of the files
for the selection.

Chapter 9. Connecting the Parts 229

Apropertyview

Table 27. (Part 2 of 2) Implementing a Video File Selection

Step Action

5 Connect the fizeroaJroe attribute of the IVBFileDialog* part to the
tefff attribute of the VIdeoFjzeIVcI77te entry field, E.

This attribute-to-attribute connection guarantees that whenever
the user selects a file, the content of the VIdeoFz.ZeIVcb77ie entry fieldischangedaccordingly.

6 Connect the buttonclickEvent event of the Fj7?cZ. . . push button totheShowModallyactionoftheIVBFileDialog*part,E.

Use the ShowModally action to force the user to select a file name
before returning to the Video page of the notebook.

Note: Reverse highlighted numbers and letters are keyed to Figure 86 on
page 229.

Adding Multimedia Features

To enable the user to play digital video files, use the IMMDigitalvideo
part from the \IBMCPP\DDE4VB\VBMM.VBB file. Among other nifty
features, this part enables users to load a video file (extension .AVI) on
a different thread and play it in the window of their choice.

Follow the step-by-step instructions in Table 28 to add multimedia
features to your part.

Table 28. (Part 1 of 2) Implementing Multimedia Features

Step Action

1 Add an IMMDigitalvideo* part, on the free-form surface, E. (IMM-DigitalvideopartislocatedintheVBMM.VBBfile.UsetheOp£Zo7t

i Add pc!r£... from the Composition Editor pull-down menu to add
it to the free-form surface.)

2 Connect the ready event of the Apropertyview part to the set-
Window action of the IMMDigitalvideo* part, E].

This connection requires a parameter: the window where the video
is played.

3
go°nnnneecct:o(£eEe.E)thefaandzeattributeofthelcanvas*parttothe
This connection enables the video to be played on the canvas. This
connection is not necessary if you do not want to specify a window
for the video. If you do not specify a window for the video, the video
is played in a default window created by the part.

230 VisualAge for C++ for OS/2

Apropertyview

Table 28. (Part 2 of 2) Implementing Multimedia Features

Step Action

4 Connect the buttonclickEvent event of the LocLd push button to
the loadonThread action of the IMMDigitalvideo* part, E].
The connection requires a video file name as a parameter (notice
that the connection is dashed).

5 Connect (see E) the fe#£ attribute of the VIdeoFZzeIVc}77?e entry fieldtothefizeJaaJ7aeattributeoftheconnectionE.

6
S:rntnteoc:htg:ffzsagtat:±Zbept:Uoffcteh:#bMu5e±;f##d¥ong:]aar¥:fi?ane]*
This connection associates each behavior feature of IMMDigital-
Video with the corresponding animated button of the IMMplayer-
Panel.

7
tchoen[noe:L8h:TP£::::daoct¥nvoefntth:v[e#tMo£:EetaREdFe±:%Dp±£#£partto
This connection loads the video file name so that the video can be
played.

8 Connect (see E) the fe#£ attribute of the VIdeoFZzeIVc!77?e entry fieldtothefilenameparameteroftheconnectionE.

Note: Reverse highlighted numbers and letters are keyed to Figure 86 on
page 229.

If you have trouble accessing the controls located in the video
group box, you can move the group box on the free-form sur-
face, make your connections, and move the group box back to
the video page. To move the group box back to the video page,
follow these steps:

1. Resize it down on the free-form surface.
2. Drop it on one of the upper-left cells of the multicell can-

vas.
3. Resize it up with the mouse while holding the ALT key.

The ALT key lets you resize a control to make it span multiple
cells of a multicell canvas.

You can also access the Tabbing and Depth Order dialog box of
the canvas where the group box is located and move the group
box above the controls it surrounds.

Chapter 9. Connecting the Parts 231

Apropertyview

Adding a Pop-up Menu

To facilitate editing the description page, add a pop-up menu to the
MLE control so that the user can use its copy, cut, paste, and undo
functions (see Figure 87). For more information about how to build a
rnerra, refer to the Visual Builder User's Gui,de .

Figure 87. Building a Pop-up Menu for the Multiple-Line Edit Control

To implement these connections, follow the step-by-step instructions
in Table 29.

Table 29. (Part 1 of 2) Building a Pop-up Menu

Step Action

1 Switch to the Description page.

2 Add an IMenu* part on the free-form surface, E. (The IMenu part is
located in the Frc}me e#£e77sZo77s category.)

3 Click on the Sticky check box at the bottom of the palette. When
you select Sfjcky, the mouse remains loaded with the part you last
selected. This makes it easy to drop several copies of the same part.

4 Add four IMenultem* parts on the part, E (see E for the first menu
item).

Because the S£Zcfay check box is selected, you do not have to reselect
the IMenultem* part from the parts palette.

5 Deselect the Sticky check box.

6 Add an IMenuseparator* part between the third and fourth menu
item.

232 VisualAge for C++ for OS/2

Apropertyview

Table 29. (Part 2 of 2) Building a Pop-up Menu

Step Action

7 Change the label of each menu item to match those in Figure 87.

8 Connect the lmenz4 attribute of MultiLineEditDescription to the
£hfs attribute of the IMenu* part, E].

The menu is associated with the MLE control.

9 Connect the commandEvent event of the Cz/i menu item to the
cut action of MultiLineEditDescription, E].

10 Connect the commandEvent event of the Capy menu item to the
copy action of MultiLineEditDescription, E|.

11 Connect the commandEvent event of the Pcisfe menu item to the
paste action of MultiLineEditDescription, H.

12 Connect the commandEvent event of the U7tdo menu item to the
undo action of MultiLineEditDescription, E].

You can access the undo action from a dialog box, which is dis-
played when you select the jl4lore... option in the MultiLineEdit-
Description pop-up menu.

Note: Reverse highlighted numbers and letters are keyed to Figure 87 on
page 232.

Connecting a Nonvisual Part to a Visual Part

To update the value of its different static text controls, the Marketing
page must be able to access the services of the AMarketinglnfo non-
visual part (refer to "AMarketinglnfo" on page 214).

The entry fields of Apropertyview provide AMarketinglnfo with the
values for the price, size, commission rate, and down payment rate. In
return, the AMarketinglnfo part provides Apropertyview with the
values for the price/sqft, commission, and down payment (Figure 88).

Chapter 9. Connecting the Parts 233

Apropertyview

I.'..:I..:.

._..T..I.I-:===Price

i..i............................+.'...........-........
''1`'"

Price/Sqft rNot arfai[abie
I

I
Dags on Market Not available

I I 11
1111 ,I II 11''

Rate

•.....

JAmount
Not available.

I

I.....

I I I.
I I 11
I, . 11-I I'
Fiate

.....:i

JAmount
rNot available •E:...

lJ.I,." ...

Figure 88. Connections between AMarketinglnfo and Marketing Page

To implement these connections, follow the step-by-step instructions
in Table 30.

Table 30. (Part 1 of 2) Using AMarketinglnfo Part

Step Action

1 Switch to the Marketing page.

2 Add a AMarketinglnfo* part on the free-form surface, E (use theOpfjo7?iAdczpc!r£...fromtheCompositionEditorpull-downmenu).

3 Connect the zJCIZz4eASDoz4bze attribute of EntryFieldprice to the
price attribute of AMarketinglnfo*, E.
Use the zjczzz/eASDoztbze attribute instead of the fe#£ attribute
because the AMarketinglnfo part expects a double value.

4 Connect the uazz4eASDoz4bze attribute of EntryFieldsize to the size
attribute of AMarketinglnfo*, E].

Note that the size attribute is located on the Characteristics page.

5 Connect the prfcepersq# attribute of AMarketinglnfo* to the fe#£
attribute of staticTextpricesqft, E].

6 Connect the ucIZz4eASDoz4bze attribute of EntryFieldcommission-
Rate to the co7„]mfssfo7®Rate attribute of AMarketinglnfo*, E.

234 VisualAge for C++ for OS/2

Apropertyview

Table 30. (Part 2 of 2) Using AMarketinglnfo Part

Step Action

7 Connect the co7m7rofssfo7®VcIZz.e attribute of AMarketinglnfo to the
£e#£ attribute of staticTextcommissionvalue, E].

8 Connect the I;cIZz4eASDoz4bze attribute of EntryFieldDown-
PaymentRate to the dozuJ®PnymeJ®£RCIfe attribute of AMarketing-
Info' E.

9 Connect the cZozuJ®PcnyJne7®£ attribute of AMarketinglnfo to the te#£
attribute of staticTextDownpaymentvalue, E].

Note: Reverse highlighted numbers and letters are keyed to Figure 88. The
static text control, Sfo£ZcTe#£Days07tMc[rfae£, is not updated in this view. It
will be connected in another view.

You can now save your part and generate its code. From the Visual
Builder window, select Scbz/e cEJ7d geJ?erclfe i Pclrf soL4rce in the FZze
pull-down menu.

Design Considerations

In most cases, it is worthwhile to encapsulate service parts in other
parts. Such encapsulation enhances reusability while reducing com-
plexity. In Apropertyview, you embed the multimedia features, file
dialog window, and AMarketinglnfo part to hide the complexity of the
view and make it a self-contained part that is easily reusable. It is pos-
sible to build separate parts for the different pages and embed the
nonvisual parts in the pages. However, because the pages are simple
and will not be reused, they are directly implemented at the notebook
level (see "Using a Notebook Control" on page 157).

At this point, you may wonder why you do not embed the Data Access
Builder nonvisual parts and the database services parts in Aproperty-
View. The reason is simple: You reuse Apropertyview for the property
creation and property update. Moreover, the type of Data Access
Builder part used in each case is quite different:
I In the property creation process, the data flows from the view,

where the user enters the property information, to the Data
Access Builder parts (Apropertycreateview-see Figure 90 on
page 239 and Figure 91 on page 241). The Data Access Builder
parts are embedded in Apropertycreateview to represent the new
records that are added to the database.

I In the property update process, the data flows from the Data
Access Builder part variables to the view where the user can
update the property information (Apropertyupdateview-see

Chapter 9. Connecting the Parts 235

Apropertycreateview

Figure 97 on page 252). The Data Access Builder part variables
are embedded in Apropertyupdateview to represent the records
that already exist in the database.

Both Apropertycreateview and Apropertyupdateview reuse
Apropertyview to collect the user information. However, you cannot
embed Data Access Builder parts or Data Access Builder part vari-
ables in Apropertyview because:
I In the first case, you could reuse Apropertyview for Aproperty-

Createview but not for Apropertyupdateview.
D In the second case, you could reuse Apropertyview for Aproperty-

Updateview but not for Apropertycreateview.

The above example reveals the kind of trade-off you must make if you
want a part to be truly reusable.

Apropertycreateview
From the CRC card, we know that Apropertycreateview part is
responsible for creating a new property. From the design object model
of the Property subsystem, we know that to create a property we must
create each of its components: PropertyLog, AMarketinglnfo, Multi-
doc, and Address. Each component has a corresponding class gener-
ated by Data Access Builder, namely, Property_log, Marketing_info,
Multidoc, and Prop_address (see Figure 89). These parts are the col-
laborators of Apropertycreateview.

The event-trace diagram for the creation of a property provides the
information for connecting the different parts involved in the creation
process. A first group of connections initializes each component
(Address, Marketing_info, Property_log, Multidoc, and Property itselD
as the user enters the property information from the view. These con-
nections are attribute-to-attribute connections from the promoted
attributes of Apropertyview to the corresponding attributes in the
Data Access Builder parts.

The second group of connections is triggered as soon as the user clicks
on the Crecife push button and adds the contents of each Data Access
Builder part to its respective table. These connections are event-to-
action connections from the Creczfe push button of Apropertycreate-
View to each Data Access Builder part.

In the sections that follow, you build the part in three steps:

1. You add the parts required to implement the part logic.
2. You build the attribute-to-attribute connections.
3. You build the event-to-action connections.

236 VisualAge for C++ for OS/2

Apropertycreateview

[EP]E H E
DBConnection VBFlyText

Figure 89. Apropertycreateview and Its Subparts

To add the parts required to implement the part logic, follow the step-
by-step instructions in Table 31. Be sure your Data Access Builder
parts are loaded in the Visual Builder Window.

Table 31. (Part 1 of 2) Adding Parts in Apropertycreateview

Step Action

1 Open the Apropertycreateview part.

2 Add a Property* part, E, on the free-form surface (Opfjo7t i Add
PcLrf... from the Composition Editor). This part is initialized with
the information on the Characteristics and Description pages.

3 Add a Property_address* part, E, on the free-form surface (Op£Zo7? i
Add Port... from the Composition Editor). This part is initialized
with the information on the Address page.

4 Add a Multidoc* part, E, on the free-form surface (Op£Zo7? i Add
PcLr£... from the Composition Editor). This part is initialized with
the information on the Video page.

Chapter 9. Connecting the Parts 237

Apropertycreateview

Table 31. (Part 2 of 2) Adding Parts in Apropertycreateview

Step Action

5 Add a Marketing_info* part, E, on the free-form surface (Op£Zo77 i
AcZcZ Pczr£... from the Composition Editor). This part is initialized
with the information on the Marketing page.

6 Add a Property_log* part, I, on the free-form surface (Op£Zo7t i Add
Pc!r£... from the Composition Editor). This part is set up automati-
cally with a custom logic connection.

7 Add an IDatastore* variable part, B on the free-form surface
(Opfjo7t i Add Pczr£... from the Composition Editor). This variable
part holds the database connection. The connection is established
when the application starts (see "Managing Database Connection"
on page 246 and "Using Variable Parts" on page 243).

Note: You can also add a variable part from the jl4lodezs category. If you do,
you must change the type of the variable to IDatastore* (option ChcI7tge
7}pe... in the variable part pop-up menu). Notice that the IVBvariablepart*
part is called the IVBvariable* part in the parts palette. In the rest of this
book, we call a variable from its reference name: IVBvariablepart.

8 Promote the IDatastore* variable part so that it can get its contents
from other parts (see "Managing Database Connection" on page
246).

9 Add an IVBFlyText* part, E, on the free-form surface (located in the
Ocher category). This part is used to display contextual help text in
the window info area (see "Adding Fly-over Help to a Control" on
page 247).

Note: Reverse highlighted letters are keyed to Figure 89 on page 237.

Once you have placed the parts on the free-form surface, you can build
the connections. First, build the group of attribute-to-attribute connec-
tions that associate the contents of each entry field of the view with
the corresponding Data Access Builder part's attribute (see
Figure 90). Then, connect the IVBFlyText part to the window info
area.

238 VisualAge for C++ for OS/2

Apropertycreateview

-I:-
DBConnection

I
VBFlyText

EREJ
Property_ac]dress

ffi
Multldocvic]eo

ffi
Marketing_Info

ffil
Property_log

Figure 90. Attribute-to-Attribute Connections in Apropertycreateview

Make the attribute-to-attribute connections as shown in Table 32.

Table 32. (Part 1 of 2) Making Attribute-to-Attribute Connections in
Apropertycreateview

Key Connection Description

E] I property_id i propertylD Synchronize the value of each
I propertysize i size attribute (Property part).
I propertyBedrooms i bed-

rooms
I propertyBathrooms i bath-

rooms
I propertystories i stories
I propertyHeating i heating
I propertycooling i cooling
I multiLineEditDescription-

Text i description

Chapter 9. Connecting the Parts 239

Apropertycreateview

Table 32. (Part 2 of 2) Making Attribute-to-Attribute Connections in
Apropertycreateview

Key Connection Description

E] I address_id i propertylD Synchronize the value of each
I addressviewEntryFieldAr- attribute (Property_address

eaText i area part). The address_id i
I addressviewEntryFieldcity- propertylD connection enables

Text i city the Property and Address tables
I addressviewEntryField- to be joined.

StreetText i street
I addressviewEntryFieldzip-

CodeText i zip_code
I addressviewcomboBox-

StateText i state

E] I propertylD i multidoc_id Synchronize the value of each
I filename i VideoFileName attribute (Multidocvideo part).

The propertylD i multidoc_id
connection enables the Property
and Multidoc tables to be joined.

E I propertylD i property_id Synchronize the value of each
I commissionRate i attribute (Marketing_info part).

commission rate The propertylD i property_id
I downpaymentRate i connection enables the Property

down_payment_rate and Marketing_info tables to be
I price i price joined.

E] propertylD i property_id For joining the Property and
Property_log tables.

Note: Fly-over help is detailed in "Adding Fly-over Help to a Control" on
page 247.

E this i longTextcontrol Display the long text of fly-over
help in the window area.

Note: Reverse highlighted numbers are keyed to Figure 90 on page 239. To
keep the drawings simple, we do not key all connections.

If you look closely at the event-trace diagram of the property creation
scenario (Figure 38 on page 98), you can see that all of the attribute-
to-attribute connections refer to the Z7?Z£Zczzjze arrows between the
Apropertycreateview and each Data Access Builder class. Of course

240 VisualAge for C++ for OS/2

Apropertycreateview

in the event-trace diagram, we do not represent all of the arrows.
Rather, we draw one Z7?Z£Zcxzjze arrow for several attribute-to-attribute
connections

To browse a set of connections all at once (either to see the
connection order or to display the list of all connections with-
out having to select connections one by one and look at the
status line), select the reorder connection feature. From a
selected part, click on the right mouse button and select the
Reorder Co7?7?ecfjo7?s From option from the part's pop-up
menu. You will get a list of all connections issued from that
part. You can change the order of the connections by drag-
ging and dropping the connections within the list (see
Figure 92 on page 243)

Now you can build the event-to-action connections, which refer to the
c[czd arrows drawn from Apropertycreateview to each Data Access
Builder class (see Figure 91 and Table 33).

Figure 91. Event-to-Action Connections in Apropertycreateview

Chapter 9. Connecting the Parts 241

Apropertycreateview

Table 33. Making Event-to-Action Connections in Apropertycreateview

Key Connection Description

E buttonclickEvent i add Add a row in the Property table.

E] buttonclickEvent i add Add a row in the
Property_address table.

Note: The order of the next two connections is crucial!

E] buttonclickEvent i type Set the document type. VIDEO
is the only type implemented
(see "Passing a Parameter to a
Connection" on page 248).

E buttonclickEvent i add Add a row in the Multidoc
table.

E] buttonclickEvent i add Add a row in the
Marketing_info table.

Note: In the next three connections buttonclickEvent i add must be the
last connection!

E buttonclickEvent i status Set the property status to
AVAILABLE at creation time
(see "Passing a Parameter to a
Connection" on page 248).

E buttonclickEvent i custom- Set the time stamp creation
Logic (see "Using Custom Logic" on

page 249).

E] buttonclickEvent i add Add a row in the Property_log
table.

E] buttonclickEvent i commit Commit the transaction in the
database.

EE buttonclickEvent i close Close the window.

E buttonclickEvent i close Close the window.

Note: Reverse highlighted numbers are keyed to Figure 91 on page 241.

Ensure that the event-to-action connections from the CrecLfe push but-
ton are in the proper order. To check the order of connections drawn
from a part, use the Reo7-der Co7777ec£Zo7?s Fro77}... option from the
part's pop-up menu (see Figure 92).

242 VisualAge for C++ for OS/2

Apropertycreateview

Figure 92. Connection Order for the Create Push Button

You can now save your part and generate its code. From the Visual
Builder window, select Sclz/e o7?d ge7?e7^cbfe i Pcirf soz/rce in the FZze
pull-down menu.

Using Variable Parts

Variable parts play an important role in applications. You use variable
parts primarily in two situations:
I To act as a placeholder inside a composite part for parts that can-

not be found in the composite part. Using variable parts in non-
visual parts enables you to pass data or functions between parts.
Using variable parts in visual parts enables you to pass data
across different visual parts. For example, you use an IDatastore*
variable part to transmit the connection from one visual part of
the application to another (see "Managing Database Connection"
on page 246). You will also use variable parts in the Aproperty-
SearchResultview and Apropertyupdateview to pass the record
selected in the first view to the second view.

I To represent part instances created with factory parts (see "Using
an Object Factory to Update the Database" on page 271).

Chapter 9. Connecting the Parts 243

Apropertycreateview

You can add a variable part on the free-form surface in three different
Ways:

I Select a variable part from the Moczezs category. Once the variable
part is on the free-form surface, you must change its type to the
type of the part it represents.

rl Fr`OTm the qoTmppsit}on^Ed.itor. TrLeFn, use Options -Ad,d part... to
add a part. Instead of selecting Pczrf in the Add cls radio button,
you select Vc!rzczbze. In this case the type of the variable part is
automatically set according to the part class you have entered.

I Use the tear-off feature to expose a subpart of a part (see "Tearing
Off an Attribute" on page 316). In this case the type of the variable
part is automatically set according to the class of the attribute
exposed.

It is often better to use a variable part to update a set of entry fields
than it is to promote text attributes of entry fields and then update the
entry field contents one by one from another part by using attributel
to-attribute connections. For example, suppose you build a simple
property view to display some property information (Figure 93). You
would use the Data Access Builder Property part to hold the property
information.

Figure 93. Simple View to Display Property Information

Each time you want to reuse the Property view from another part and
update the contents of each entry field with the property information,
you must connect each attribute from the Property part to the text
attribute of each entry field. In this case, you must promote the text
attribute of each entry field of the Property view (Figure 94).

244 VisualAge for C++ for OS/2

Apropertycreateview

Figure 94. Reusing the Property View from Another Part: First Thy

A better design would be to use a Property variable part in the Prop-
erty view and promote only the variable part itself (Figure 95).

Figure 95. Simple Property View with Its Associated Variables

In this way, when you use the Property view from another part, you
draw only one connection to update the view (Figure 96).

Chapter 9. Connecting the Parts 245

Apropertycreateview

Figure 96. Reusing the Property View from Another Part: Second Thy

In our application, you use variable parts in Apropertyupdateview to
set the contents of entry fields in each notebook page. You set the vari-
able contents from ApropertysearchResultview, using only one con-
nection (see "ApropertysearchResultview" on page 265).

Managing Database Connection

Before the user can access a subsystem, a database connection must
be established (see Chapter 6, "Mapping Relational Tables Using Data
Access Builder," on page 127). A problem arises when the application
accesses the database from several views. In that case, each view must
hold an IDatastore* part to connect to the database, and the applica-
tion ends up with some overhead each time the user switches from one
view to another, chaining database connections all along. To avoid this
problem, use only one IDatastore* part in your application primary
Vlew and pass it to the other views through variable parts. This is a
convenient and efficient way of managing a unique connection shared
among several application views.

Each part using the database must contain a variable part of type
IDatastore*. This variable part must be promoted to receive a refer-
ence of IDatastore* from the parts that use it.

Now, let us suppose that your application consists of several parts that
are organized in a five-level hierarchy. If some parts of the last level
must access the database, you must add and promote an IDatastore*

246 VisualAge for C++ for OS/2

Apropertycreateview

variable part in all intermediate levels from the second level up to the
fifth. This action is necessary because the promote feature cannot
jump a hierarchy level.

In our case, you add an IDatastore* part in the primary view, AReal-
Mainview, to establish one database connection at startup. Then,
because this database connection must be used in Apropertyupdate-
View, you have to add and promote an IDatastore* variable part in
each view that belongs to the hierarchy branch: Apropertysearchpa-
rameterview, ApropertysearchResultview, and Apropertyupdate-
View (see the view hierarchy in Figure 53 on page 145).

Adding Flylover Help to a Control

To provide instant help to the novice user, you can use #y-ouer foezp,
which consists of a text string that is displayed when the user posi-
tions the mouse pointer over a control, such as an entry field or a push
button. The text should be short and should indicate the purpose of
the control.

The application can provide two kinds of fly-over help:
I A short text string that your application displays in a bubble (it is

also called bztbbze hezp) next to the subpart on which you have
your mouse pointer

I A long text string (more explanatory) that your application dis-
plays in a text control (such as an entry field or an info area)

To provide fly-over help for a subpart:

1. Drop an IVBFlyText* part on the free-form surface (IVBFlyText*
part is located in the Ocher category).

2. Open the settings of the subpart and, on the control page, enter
the fly-over short text, fly-over long text, or both.

Text entered in fly-over short text is displayed as a bubble help for this
subpart, and you do not need any connections to make it work!

Text entered in fly-over long text can be displayed in a window info
area: Connect the fhzs of the info area to the longTextcontrol of the
IVBFlyText* part (for more information refer to the VIsz4ciz Bz/Zzder
User's Guide).

To add fly-over help to the Creclfe push button, follow these steps:

1. Open the settings notebook of the CrecLfe push button.

2. Switch to the Control page.

Chapter 9. Connecting the Parts 247

Apropertycreateview

3. In the Fly ozJer sbor£ £exf entry field, type in the following text:
Create a new property. This text will display in a bubble when
the user positions the mouse on the C7^ec!£e push button.

4. In the Fzy ouer Zo7?g fexf entry field, type in the following text: Fill
in each entry field before creating a property in the data-
base. This text will display in the frame window info area added
for this purpose.

These few steps are all you have to do to give your application slick
contextual help! Save the part again and regenerate its source code to
register the changes.

In the next sections, feel free to add your own fly-over short and long
texts for your parts.

Passing a Parameter to a Connection

Sometimes an event-to-action connection needs one or several param-
eters to execute. In such cases, the connection displays as a dashed
line. You can provide the connection with the parameters in two ways:
I Open the settings of the connection and click on the Set Parame-

ters... push button. A dialog box is displayed and you are
prompted to give the parameter's value. If the parameter is a text
string and the type of the parameter is an Istring, you can enter
the string without double quotes. Otherwise, you must surround
the string with double quotes. In this case the parameters are set
sfclfzccLzdy: Each time the connection fires, it uses the same param-
eter values.

I Connect an attribute of the matching type to the parameter of the
connection. This parameter is shown in the connection pop-up
menu. The parameter connection is a kind of attribute-to-attribute
connection, but it is unidirectional (see "Using Visual Builder" on
page 27). In this case, the parameters are set czy77cI77tzcozdy: Each
time the connection fires, it uses the parameter values according
to the parameter connection.

In connection E (see Table 33 on page 242), you provide the string,
VIDEO, as the type of medium to which the file name refers. Double-
click with the mouse on this connection to get the connection settings
dialog box. Then click on the Set Parameters... push button. You can
see VIDEO in the type entry field (notice that there are no quotes). Do
the same for the property status, setting the sfc!£zts attribute of the
Property_1og* part to AVAILABLE (other property statuses are
PENDING and SOLD).

248 VisualAge for C++ for OS/2

Apropertycreateview

Using Custom Logic

A custom logic connection is an easy way of calling your own custom-
ized C or C++ code whenever an attribute's value changes or an event
occurs. When you connect an attribute to a custom logic, the attribute
event identifier is used to notify the custom logic connection and call
your code when the attribute's value changes. You can use this connec-
tion for small code that you do not plan to reuse. For more information
about custom logic connections, refer to the VIsz/cbz Bz/Zzder User's
Gui,de .

In Apropertycreateview, you use a custom logic connection to set the
dozu7tzocid_£Z77iesfc!7xp and ZcisLapdclfe attributes of the Property_log
table.

A dozu7?Zocld_£Z77tesfcb77?p is associated with the creation time and date
of each property record in the database. A ZcbsLztpdcIfe attribute is
associated with the date and time of the update of each property
record in the database. It contains the date and time when the record
is created or updated in the database. In D82/2 the creci£Zo77-£j77te-
sfcmp attribute is a string of 26 characters with the following format:

yyyy-mm-dd-hh.mm.ss.xxxx

where
I yyyy represents the year (for example, 1995)
I mm represents the month (for example, 06 for June)
I dd represents the day (for example, 23 for the twenty-third)
I hh.mm.ss.xxxx represents the time (format: hour.minute.sec-

ond.millisecond)

IDate and ITime parts are combined to make up the time stamp as fol-
lows:

Code to Store Current Time Stamp

target i setDownload timestamp(
I stri. ng (I Date :Ttoday () . asstri. ng (''%Y-%m-%d '[)) +"-''+
I stri. ng (ITi me : : now () . asstri ng ('`%H .%M . %S''))) ;

target i setLast_Update(
Istri. ng (I Date : : today () . asstri ng (['%Y-%m-%d'')) +"-''+
Istri ng (ITi me : : now () . asstri ng ("%H .%M.%S][))) ;

IDate::today() returns the current date. The asstring() method is used
to translate the current date in the yyyy-mm-dd format that is com-
patible with the DATE type of D82/2 tables (for more information, see
the IBM Open Class Library Fteference).

Chapter 9. Connecting the Parts 249

Apropertycreateview

ITime::now() returns the current time, and the asstring() method is
used to translate it into the correct D82/2 time format, hh-mm-ss. The
same code is applied to the ZcbsLztpdcife attribute because at creation
time, the creation_time stamp and last_update time stamp are the
Same.

Info

The IDate and ITime parts are class interface parts. As men-
tioned in "AMarketinglnfo" on page 214, class interface
parts are nonvisual parts that have no notification ability. In
other words, they cannot send events to other parts. But,
you can trigger their action from your application events.
Visual Builder provides many class interface parts that con-
veniently wrap standard classes from the IBM Open Class
Library to enable you to use the classes in the Composition
Editor. In the same way, you can use your own C++ classes
in Visual Builder as class interface parts (refer to Chapter 8,
"Creating Nonvisual Parts," on page 213 and Chapter 10, "If
You Want to Know More about Visual Builder ..., " on
page 323).

Notice that you must use the set methods to change the attribute
value of Property_log. Otherwise, the target part will never be notified
that the attribute has changed.

The target of the custom logic connection is the Property_1og*
part. Therefore you call its methods by using the target i
functi. on (parml ,...) expression. Sometimes your custom
logic code may require that you use more than one part. To
access the parts, you must select the free-form surface as the
target connection. The free-form surface represents the com-
posite part itself, and each of its subparts is known as a
pointer within the part. In the code generated by Visual
Builder, the identifier of a pointer to a subpart is the name of
the subpart with the letter i as a prefix. For example, in
Apropertycreateview, if you had used the free-form surface
(which represents Apropertycreateview* itself) as the target
for the custom logic connection, you would have written the
snippet code as follows:

target i iproperty_log i setDownload timestamp(
I stri. ng (I Date : : today () . asstri. ng (''%Y=%m-%d ")) +`[-'[+
I stri ng (ITi. me : : now () . asstri. ng ("%H . %M . %S "))) ;

target i i.Property_log i setLast_Update(
I stri ng (IDate : : today () . asstri. ng (J]%Y-%m-%d [])) +"-" +
I stri. ng (ITi. me : : now () . asstri. ng (']%H . %M . %S]'))) ;

Because you use the IDate and ITime parts in your visual part, you
must include their corresponding header files in the code generated by
Visual Builder.

250 VisualAge for C++ for OS/2

Apropertyupdateview

1. Switch to the Class Editor of Apropertycreateview.
2. In the User f£Zes Z7?cZz4ded Z7? ge7terci£Zo7t group box fill in the

Required incl,ud,e files rist ben ELs foHlciws..

<idate.hpp> _IDATE
<itime.hpp> _ITIME

The idate.hpp and itime.hpp header files will be included in the
Apropertycreateview header file. The preprocessor uses the _IDATE
and _ITIME_ variables to avoid including the headers if they already
have been included by other subparts of the view.

You can now save your part and generate its code. From the Visual
Builder window, select Sclz;e cI7?d ge7?erc[£e i Pc}rf soz/rce in the FZze
pull-down menu.

Apropertyupdateview
Apropertyupdateview is used to update the property information. In
many ways, Apropertyupdateview is similar to Apropertycreate-
View. However, unlike Apropertycreateview, the property records of
Apropertyupdateview are not created across the five relational
tables. They are updated across the same tables.

An instance of Apropertyupdateview is created when the user has
already selected a property from the container. (This container dis-
plays the result of a search in ApropertysearchResultview.) The sig-
nificant difference in the update process is that the property and its
components already exist. For this reason, when you add the Data
Access Builder parts on the free-form surface, you must add them as
variable parts, not as parts (Figure 97). The contents of the variable
are set by parameter connections in ApropertysearchResultview (see"Using Variable Parts" on page 243).

Chapter 9. Connecting the Parts 251

Apropertyupdateview

6

E[Epj EEffi EE
DE3Cc]nnection DBMessageBox VBFlyText

Property_Eiddress

Figure 97. Attribute-to-Attribute Connections in Apropertyupdateview.

To add the different subparts to the free-form surface, follow the step-
by-step instructions in Table 34. (Numbers refer to Figure 97).

Table 34. (Part 1 of 3) Adding Subparts in Apropertyupdateview

Step Action

1 Open the Apropertyupdateview part.

2 Add a Property* variable part, n, to the free-form surface (Opfjo7iiAdczPc}r£...fromtheCompositionEditor).Thisvariablereceives

its contents from ApropertysearchResultview and sets the Char-
acteristics and Description page information.

3 Add a Property_address* variable part, E, to the free-form surface
(Opfjo7? i Aczd Pc¥r£... from the Composition Editor). This variable
gets its contents from ApropertysearchResultview and sets the
Address page information.

4 Add a Multidoc* variable part, E, to the free-form surface (Opfjon
i Aczd Pcir£... from the Composition Editor). This variable gets its
contents from ApropertysearchResultview and sets the Video
page information.

252 VisualAge for C++ for OS/2

Apropertyupdateview

Table 34. (Part 2 of 3) Adding Subparts in Apropertyupdateview

Step Action

5 Add a Marketing_info* variable part, E, to the free-form surface
(Opfjo7? i Add PcLr£... from the Composition Editor). This variable
gets its contents from ApropertysearchResultview and sets the
Marketing page information.

6 Add a Property_log* variable part, E], to the free-form surface
(Op£Zo7i i Add Pcir£... from the Composition Editor). This part is
automatically updated with a custom logic connection.

7 Add an IDatastore* variable part, E to the free-form surface
(Op£Zon i Add Pc}r£... from the Composition Editor). This variable
holds the database connection that established when the applica-
tion starts (see "Using Variable Parts" on page 243 and "Managing
Database Connection" on page 246).

Note: You can also add a variable part from the Modezs category. If you do
so, you must change the type of the variable to the type of the part it repre-
sents (use the Chcb7?ge 7)/pe... option in the variable part pop-up menu).

9 Promote the Property* variable part.

10 Promote the Property_address* variable part.

11 Promote the Multidoc* variable part.

12 Promote the Marketing_info* variable part.

13 Promote the Property_1og* variable part.

14 Promote the IDatastore* variable part.

Note: Each variable part is promoted to be accessible from other parts and
to receive its contents from these parts (see "Using Variable Parts" on page
243).

15 Add an IMessageBox* part, E, on the free-form surface (located in
the Ofher category). This message box is used to display an excep-
tion if the transaction cannot be committed (see ``Showing Excep-
tion in a Message Box" on page 259).

16 Add an IVBFlyText* part, H, on the free-form surface (located in
the Ocher category) and add some fly-over short and long texts to
the different push buttons (see "Adding Fly-over Help to a Control"
on page 247).

Chapter 9. Connecting the Parts 253

Apropertyupdateview

Table 34. (Part 3 of 3) Adding Subparts in Apropertyupdateview

Step Action

17 Add an IVBLongpart* part, E, on the free-form surface (Opfjon iAczdPort...fromtheCompositionEditor).Thispartcontainsthe

number of days since the property was created in the database (see
"Using Sample Parts" on page 259).

18 Add an ITitle* part, E, on the free-form surface (located in the
Frc!77}e E#fe7tsjo7ts category). This part represents the frame win-
dow title. Its ofy.ec£Fe#£ attribute is updated by the ZcESLztpdc!£eattributeofProperty_log(see"UpdatingaWindowTitleDynami-cally"onpage264).

Note: Reverse highlighted letters are keyed to Figure 97 on page 252.

Because Apropertyupdateview is similar to Apropertycreateview, we
use the same mode of presentation: First we describe the attribute-to-
attribute connections, then we describe the event-to-action, parame-
ter, and custom logic connections.

Connect the parts with the attribute-to-attribute connections shown
in Table 35.

Table 35. (Part 1 of 2) Making Attribute-to-Attribute Connections in
Apropertyupdateview

Key Connection Description

I I propertylD i property_id Synchronize the value of each
I size i propertysize attribute of Property part with

the Characteristics page entry
I bedrooms i propertyBed- fields.

rooms

I bathrooms i property-
Bathrooms

I stories i propertystories
I heating i propertyHeating
I cooling i propertycooling
I description i multiLine-

EditDescriptionText

254 VisualAge for C++ for OS/2

Apropertyupdateview

Table 35. (Part 2 of 2) Making Attribute-to-Attribute Connections in
Apropertyupdateview

Key Connection Description

E] I propertylD i address_id Synchronize the value of each
I area i addressviewEntry- attribute of Property_address

FieldAreaText part with the Address page
I city i addressviewEntry- entry fields. The propertylD i

FieldcityText property_id connection enables
I street i addressviewEn- the Property and Address tables

tryFieldstreetText to be joined.
I zip_code i addressviewEn-

tryFieldzipcodeText
I state i addressviewcom-

boBoxstateText

E] I multidoc_id i propertylD Synchronize the value of each
I VideoFileName i filename attribute of Multidocvideo part

with the Video page entry fields.
The propertylD i property_id
connection enables the Prop-
erty and Multidoc tables to be
joined.

E I property_id i propertylD Synchronize the value of each
I commission ratei attribute of Marketing_info part

commissionRate with the Video page entry fields.
I down_payment_rate i The propertylD i property_id

downpaymentRate connection enables the Prop-
I price i price erty and Marketing_info to be

joined.

E] property_id i propertylD Join the Property and
Property_log tables.

E this i longTextcontrol Display the long text of fly-over
help in the window area.

E this i owner Associate the window title con-
trol with the main window.

E] last_update i viewText Synchronize the value of
last_update with the contents of
the window title.

E valueASText i DaysonMarket Synchronize the value of the
DaysonMarket part with the
DaysonMarket feature pro-
moted from Propertyview.

Note: Reverse highlighted numbers are keyed to Figure 97 on page 252. To
keep the drawings simple, we do not key all of the connections.

Chapter 9. Connecting the Parts 255

Apropertyupdateview

Because the event-trace diagram of the property update scenario is
not detailed enough, you cannot see the attribute-to-attribute connec-
tions (Figure 40 on page 101). Rather, you see a connection from
ApropertysearchResultview and Apropertyupdateview with the se7tcz
Z7tfo label. This connection is the representation of the data which
flows from one view to another by means of the variable parts (see"Using Variable Parts" on page 243).

Using event-to-action, parameter, custom logic and event-to-member
function connections, connect the subparts as shown in Figure 98 and
Table 36.

Figure 98. Event-to-Action Connections in Apropertyupdateview

Table 36. (Part 1 of 2) Making Event-to-Action Connections in
Apropertyupdateview

Key Connection Description

E] buttonclickEvent i update Update the row in the Property
table.

E buttonclickEvent i update Update the row in the
Property_address table.

256 VisualAge for C++ for OS/2

Apropertyupdateview

Table 36. (Part 2 of 2) Making Event-to-Action Connections in
Apropertyupdateview

Key Connection Description

E buttonclickEvent i update Update the row in the Multidoc
table. Notice that you do not
have to set the type to VIDEO
because it already has been set
up, and it cannot be changed
from the view.

E buttonclickEvent i update Update the row in the
Marketing_info table.

Note: For the next two connections, buttonclickEvent i update must be
the last connection!

E buttonclickEvent i custom- Set the last update time stamp
Logic (see "Using Custom Logic" on

page 249).

E buttonclickEvent i update Update the row in the
Property_log table.

B buttonclickEvent i commit Commit the transaction in the
database.

E] exceptionoccurred i showEx- Show the commit exception in
ception the message box when it occurs.

E visible i daysonMarket() Compute the number of days the
property is on the market when
the window is displayed (see
"Using the Member Function
Connection" on page 260).

E buttonclickEvent i close Close the window.

EE] buttonclickEvent i close Close the window.

Note: Reverse highlighted numbers are keyed to Figure 98 on page 256.

Ensure that the event-to-action connections from the Updofe push
button are in the proper order. To check the order of connections
drawn from a part, use the Reorczer Co7?Jtecfjo7ts F7^o77?... option from
the part's pop-up menu (see Figure 99).

Chapter 9. Connecting the Parts 257

Apropertyupdateview

Figure 99. Connection Order for the Update Push Button

Because IDate, ITime, Istring, and the Istring parser parts are used
through connection EE, to calculate the number of days the property is
on the market, you must include their corresponding header files in
the code generated by Visual Builder:

1. Switch to the Class Editor of Apropertyupdateview.
2. In the group box entitled User f£Zes Z7?cZz/ded j7i ge7?erci£Zo7?, fill in

the Regz/Z7-ed j7?czztde /Zzes list box as follows:

<idate.hpp> IDATE
<itime.hpp> ITIME
<istring.hpp> -_ISTRlivG
<istparse.hpp>_ISTPARS-H

These header files are included in the Apropertyupdateview header
file. The processor uses IDATE_, _ITIME_, _ISTRING_, and ISTPARSE
variables to avoid including these headers if they already have bee=
included by other subparts of the view.

You can now save your part and generate its code. From the Visual
Builder window, select ScLLJe cL7}cZ ge77ercLfe i Pc}rf soz4rce in the FZze
pull-down menu.

As with Apropertycreateview, you can see the correspondence of the
event-to-action xpcZcLfe in the view and its representation in the event-
trace diagram of the property update scenario (Figure 40 on page 101).

258 VisualAge for C++ for OS/2

Apropertyupdateview

Showing Exception in a Message Box

To trigger the display of a message box when a part throws an excep-
tion, follow these steps:

1. Add an IMessageBox* part to the free-form surface.

2. Open the message box settings and set the title to your liking.
3. Connect the exceptionoccurred event of the event-to-action

connection that throws the exception to the showException
action of the message box.

When the connection is triggered, the action is executed in a fry block.
If the action fails, a cc!£ch block allows the connection to execute an
alternative action, such as showing the message box (for more infor-
mation on the C++ exception handling framework, refer to the C/C++
Lcz77gzapge Refere77ce). This facility is used in Apropertyupdateview to
catch a commit exception on the database. In the same way, the appli-
cation can display a message box when an exception occurs during the
update of the database.

You can also tailor the message box to your needs, using the show
action. Open the settings of the exceptionoccurred i show connection
and set the message and the severity of the exception (see "Using a
Message Box to Display the Clause" on page 292).

You can use the message box to trace the flow of your program
and display some variable contents or some attribute values
during the execution of the program. For example, suppose
you want to trigger an A action when a push button is clicked.
To check the contents of the variable on which the action
depends, you connect the buttonclickEvent event of the
push button to the show action of a message box and send the
contents of the variable as a parameter to this connection.
This event-to-action connection must be triggered before
action A is executed (see "Using a Message Box to Display the
Clause" on page 292 and Figure 116 on page 293).

Using Sample Parts

Along with the basic part library (VBBase.VBB), the database access
part library (VBDAX.VBB), and the multimedia part library
(VBMM.VBB) provided with Visual Builder, comes another useful part
library: VBSAMPLE.VBB. This library deserves to be called the pro-
grci77777ter foozbox of Visual Builder. It includes parts that enhance the
basic types of the C++ language, such as String, Long, or Boolean. It

Chapter 9. Connecting the Parts 259

Apropertyupdateview

also includes some general parts that you can reuse for basic file
input/output or mathematical computation (see also "AUpLoadview"
on page 298).

In this view, you use the IVBLongpart part to hold the number of days
the property is on the market. This part contains many methods that
you might find useful for your future applications. In the rest of the
application you will use two other parts from VBSAMPLE.VBB:
I IVBstringpart is the equivalent version, for the Visual Builder,

of the standard Istring class. Unlike the class interface Istring,
IVBstringpart is a fully enabled part that can notify your own
parts. You will use it, for example, to hold the SQL clause from
which the agent selects a list of properties in Apropertysearchpa-
rameterview (see "Building the Clause" on page 285).

I IVBBooleanpart is the equivalent version, for the Visual
Builder, of the standard IBoolean class. You will use it to build the
SQL clause from check box controls in Apropertysearchparame-
terview (see "Managing the User Input" on page 284).

Using the Member Function Connection

The number of days the property is on the market is calculated by an
eLJe77£-£o-77?ember fz477cfjo77 connection. This connection can be a valu-
able alternative to a custom logic connection when you have to reuse
your own C++ code within the same part or when the code is more
than a few lines. There are two types of member function connections:
the event-to-member function connection and the attribute-to-member
function connection. Both types enable you to call a member function
of your part that you declare and define in the specific hpv and cpv
user files.

The member function connection may reveal some advantages over
the custom logic connection:

I The code is written in cpv and hpv files, which are separated from
the actual cpp and hpp files part that generates Visual Builder for
the part. Thus, each time the visual part code is generated, it does
not impact your member function code.

I In addition to a pztbzjc access specifier, you can choose to declare
the member functions with przLJofe or profecfed access specifiers.
You may find this facility useful in the context of derivation in con-
trolling the access of such "implementation functions" to inherited
members.

In our example, you add a public method, void DaysonMarket()
(Figure 100), to Apropertyupdateview to calculate the number of days
a property is on the market. This number is calculated from the cur-
rent date and the creation time stamp of the property.

260 VisualAge for C++ for OS/2

Apropertyupdateview

/**k*** /
/**
/* Declarati.on of the daysonMarket member functi.on *
/**
/* Descri.ption: *
/* Thi.s method calculates the ti.me di.fference between *
/* the system date and the property creati.on date. *
/**
/** /

publ i c :
voi d Apropertyupdatevi ew: : daysonMarket () ;

Figure 100. DaysonMarket Public Method Declaration

The public method converts the database time stamp to an IDate for-
mat and calculates the difference from the current date by using the
dcLfeToday function, which returns the system date (see Figure 101).
Then, the method sets the contents of the Days07tMcirfeef part.

Chapter 9. Connecting the Parts 261

Apropertyupdateview

IDate dateToday;
Istri.ng day, month, year, temp;
1. Property_l 09

->target()
->download ti.mestamp() >> year

>> ,_,
>> month
>> ,_,
>> day
>> ,_,
>> temp;

IDate: :Month monthYear;

swi.tch (month.aslnt()) {
case 1:

monthYear =
break;

case 2:
monthYear =
break;

case 3:
monthYear =
break;

case 4:
monthYear =
break;

case 5:
monthYear =
break;

case 6:
monthYear =
break;

case 7:
monthYear =
break;

case 8:
monthYear =
break;

case 9:
monthYear =
break;

case 10:
monthYear =
break;

case 11:
monthYear =
break;

case 12:
monthYear =
break;

} /* end swi.tch */

IDate: :January;

IDate : : February ;

IDate: :March;

IDate: :Apri 1 ;

IDate: :May;

IDate: :June;

IDate: :July;

IDate: :August;

IDate : : September;

IDate: :October;

I Date : : November ;

I Date : : December ;

IDate creati.onDate = IDate(monthYear, day.aslnt(), year.aslnt());
iDaysonMarket->setvalue(dateToday -creati.onDate) ;

Figure 101. DaysonMarket Public Method Definition

262 VisualAge for C++ for OS/2

Apropertyupdateview

To build the event-to-member function action (see EE in Table 36 on
page 256), follow these instructions:

1. Select the CoJt77ecf option from the IFramewindow* part pop-up
menu and select the visible event. The pointer becomes a spider.

2. Move the pointer to the free-form surface and click with the left
mouse button. Then choose the More... option from the pop-up
menu. In the dialog box (Figure 102), you are prompted to select
the access specifier and enter the member function prototype.

3. In the Access drop-down list, select public as the access specifier.
4. In the line below, enter the member function prototype:

void DaysonMarket().
5. Click on the OK push button. A light green connection is drawn

from the IFramewindow* part to the free-form surface.
6. Switch to the Class Interface Editor. In the User fzzes Z77cZz4ded Z77

ge77ercL£Zo7? group box, fill in the hpv and cpv entry fields with the
respective values, vrpupdv.hpv and vrpupdv.cpv.

7. With your favorite editor, edit the hpv and cpv files as shown in
Figure 100 on page 261 and Figure 101 on page 262.

Figure 102. Member Function Dialog Box

In Chapter 10, "If You Want to Know More about Visual Builder ..., " on
page 323, we show you how to use the browser provided with Visual-
Age for C++ to avoid entering the prototype of your methods in the
member function dialog box.

Chapter 9. Connecting the Parts 263

ADeleteDialogview

Updating a Window Title Dynamically

The frame window extension category of the parts palette enables you
to tailor your frame window. You have been shown how to add an info
area or a menu to your frame window. Using an ITitle* part, you can
change the title of the window after the window is created:

1. Add an ITitle* part to the free-form surface.
2. Specify the frame window to which the ITitle* part is related. You

can consider two options:
• Draw an attribute-to-attribute connection from the fhjs

attribute of the frame window to the ozu7?er attribute of the
ITitle* part.

• Open the ITitle* part settings and set the oLtJ7?er attribute to
the name of the related window (do not forget to prefix the
name with i; see "Using Custom Logic" on page 249).

3. Use the ITitle* part as follows:
• If you want to change the title when an event occurs, connect

the event to the setTitleText action of the ITitle* part and set
the parameters required by the connection. (Click on the Set
Parameters... push button in the connection settings and
enter the title in the objectName parameter. You can option-
ally specify the view name and the view number.)

• If you want to set the title from one or more attributes of other
parts, connect a text attribute to the oZ)jec£Te#£ or LJzezuTe#£
attributes of the ITitle* part. You can optionally connect a
numeric attribute to the I/ZezuIVztmber attribute of the ITitle*
part.

In our case, you display the time stamp of the property creation by
using an attribute-to-attribute connection from the ZcisLL4pdcbfe
attribute of Property_log to the I/ZezuTexf attribute of the Title part (see
connection E] in Figure 97 on page 252). The objectText attribute of the
IFramewindow* part is directly set in the Composition Editor to
"Property."

ADeleteDialogview

ADeleteDialogview visual part is used by each subsystem to warn
users before they delete a record in the database. This view is so sim-
ple that we do not provide you with step-by-step instructions.

264 VisualAge for C++ for OS/2

ApropertysearchBesultview

In fact, there is only one connection to draw! To complete the view:

1. Open ADeleteDialogview.

2. Connect the buttonclickEvent event of the Cc!77cez push button
to the close action of the frame window.

You can now save your part and generate its code. From the Visual
Builder window, select Scf ue ci7?d ge7ie7^cife i Pcirf soztrce in the FZze
pull-down menu.

Even this simple view gives us a good opportunity to point out that
you should always close your frame window part by using an event-to-
action connection within the part. This approach makes your part eas-
ier to reuse because it behaves independently of other parts. However,
sometimes you need to draw the part's connections within a composite
part that reuses your part. This is the case for the event-to action con-
nection: buttonclickHvent event of the OK push button to the close
action of the frame window. Indeed, when the user clicks the OK push
button, an event-to-action connection must delete the records in the
database before closing the window. Once the records are deleted, the
close action must be triggered from an event-to-action drawn in the
part that manages the record deletion. These two event-to-actions are
executed sequentially. Therefore, you must promote the buttonclick-
Event event of the OK push button to access it from another part.

Of course, you could decide to include the parts involved in the dele-
tion process of a property in ADeleteDialogview-such as the Data
Access Builder parts-but, in this case, ADeleteDialogview would not
have been reusable by the other subsystems. In effect, the parts
involved in the deletion process vary from one subsystem to another.

AprtopertysearchResultview
ApropertysearchResultview displays properties according to a
buyer's preferences. This view is relatively complex. Therefore, we
introduce a useful approach that will help you aggregate several non-
visual parts into one nonvisual part.

ApropertysearchResultview is responsible for executing a query
against the REAL database. The query is performed according to the
clause transmitted by Apropertysearchparameterview.

A PropertyManager manages the extraction from the database and
interacts with a container to display each matching property as a
Propertycontainerobject (see Figure 41 on page 102).

Chapter 9. Connecting the Parts 265

Apropertysearchpesultview

The user can execute several actions from the container:

Update a property: Apropertyupdateview can be called to
update the property selected in the con-
tainer.

Delete a property: ADeleteDialogview can be called to delete
the property selected in the container.

View the property video: The property video can be played using an
IMMDigitalvideo* part.

Access the Sale transaction subsystem: The status of the property
can be changed from AVAILABLE to
PENDING.

Display the interested buyers: Buyers whose preferences match
the characteristics of the selected property
can be displayed.

In the description that follows, we do not cover the interaction of the
Property subsystem with the Buyer subsystem and the Sale transac-
tion subsystem. (Look at the application provided with the book to see
how the Property subsystem interacts with the other subsystems.)
Also, we do not cover the multimedia facility because it does not pro-
vide additional information (see "Adding Multimedia Features" on
page 230). Rather, we divide the building of ApropertysearchResult-
View into three sections:

1. We show you how to display a selection of properties in a con-
tainer, using the PropertyManager part ("Selecting Properties
from the Database" on page 267).

2. We explain how to simultaneously retrieve the property informa-
tion from five tables ("Retrieving Information Across Multiple
Tables" on page 268).

3. We describe how to use an Object Factory to update property infor-
mation that has been retrieved ("Using an Object Factory to
Update the Database" on page 271).

Each section brings more and more parts and connections onto the
free-form surface. Thus, to complete this view, ensure that you follow
the instructions in the correct order.

266 VisualAge for C++ for OS/2

Apropertysearchpesultview

Selecting Properties from the Database

At the design level (Figure 41 on page 102), PropertyManager is
responsible for interacting with the database and retrieving properties
according to a specific clause. PropertyManager collaborates with
Propertycnr to display the list of properties extracted from the data-
base.

At the implementation level, you decide the type of information you
have to display in the container. Indeed, to display information from
separate tables in the same container, you have to build a view that
gathers information from each table. As mentioned in Chapter 6,"Mapping Relational Tables Using Data Access Builder," on page 127
we choose to display three types of information from three different
tables:

I Property characteristics from the PROPERTY table
I Property address from the PROPERTTY_ADDRESS table
I Property status from the PROPERTY_LOG table

Thus, you are provided with the PROP_AD_LOG view that joins the
PROPERTY PROPERTY_ADDRESS, and PROPERTY_LOG tables. You
then map the view, using Data Access Builder, into two parts: Prop_-
ad_1ogManager and Property_ad_log.

You use the select method of Property_ad_1ogManager to run the
query against the database. The clause is given as a parameter of the
action. The select action is triggered when ApropertysearchResult-
View is ready (Figure 103).

#EE]E
clause

REE
Prop_Eid_logManager

Figure 103. Querying the Database

To implement the database query, follow the step-by-step instructions
in Table 37.

Table 37. (Part 1 of 2) Adding Parts to Query the Database

Step Action

1 Open ApropertysearchResultview part.

Chapter 9. Connecting the Parts 267

ApropertysearchBesultview

Table 37. (Part 2 of 2) Adding Parts to Query the Database

Step Action

2 Add a Prop_ad_1ogManager* part, E, on the free-form surface.

3 Add an IVBstringpart* variable part, E], on the free-form surface.
This part contains the clause transmitted by Apropertysearchpa-
rameterview.

4 Promote the ffazs attribute of the variable to ensure that the clause
is accessible from Apropertysearchparameterview.

5 Connect the ready event of ApropertysearchResultview to the
select action of Prop_ad_logManager, E].

6
tco°tnhneez9£tet£:;i:r%uattet:I:btEteec°ofntt±:npe::i.e±thy±_saadttLr:g¥t:Ft%g:trt*rLpbaurtte
connection keeps the contents of the container synchronized with
the set of rows extracted from the database.

7 Connect (E) the te#£ attribute of the clause to the clause parameteroftheconnectionE].Thisconnectiontransmitsthecontentsofthe

clause to the select method of Prop_ad_logManager.

Note: Reverse highlighted letters and numbers are keyed to Figure 103 on
page 267.

Retrieving Information Across Multiple Tables

From the container, the user can perform the following actions on a
selected property:

Open Displays a property and allows the user to update its
information

Delete Removes a property from the database

To associate actions with an object selected in the container, you
attach a pop-up menu to the container (see "Adding a Pop-up Menu"
on page 232).

Each action involves a lot of information. Indeed, updating or deleting
a property encompasses updating or deleting records on every table
that makes up the property information; that is, PROPERTY,
PROPERTY_ADDRE SS , MULTI_D O C , MARKETING_INFO , and
PROPERTY LOG.

268 VisualAge for C++ for OS/2

ApropertysearchBesultview

To access these tables, you use their associated Data Access Builder
parts: Property, Property_address, Multidoc, Marketing_info, and
Property_log.

When the user selects a property in the container, its identifier can be
propagated to each Data Access Builder part by attribute-to-attribute
connections, and the refrzeue method of each Data Access Builder part
can be triggered to retrieve the corresponding record in each table
(Figure 104).

--i-:E¥ji

clause

i+ ffi

Prop_ad_logManEiger

ffiE ffiE thffiE faffiE -fuffiE
+

Property Property_a.dress Mu,``doc Ma,Keting_Info Property_log

E

E[ffi]`
Prop_ad_log

Figure 104. Retrieving Information from Multiple Tables

To retrieve the property information, follow the step-by-step instruc-
tions in Table 38.

Table 38. (Part 1 of 2) Adding Parts to Retrieve Information from Multiple
Tables

Step Action

1 Add an IVBvariablepart* part, E, on the free-form surface and
change its type to Prop_ad_1og*. This variable part references the
property selected in the container.

Chapter 9. Connecting the Parts 269

ApropertysearchResultview

Table 38. (Part 2 of 2) Adding Parts to Retrieve Information from MultipleTables

Step Action

2 Add a Property* part, E, on the free-form surface. This part is used
to retrieve the Property (characteristics) information of the selected
property.

3 Add a Property_address* part, E, on the free-form surface. This part
is used to retrieve the Property_address information of the selected
property.

4 Add a Multidoc* part, E, on the free-form surface. This part is used
to retrieve the Multi_doc information of the selected property.

5 Add a Marketing_info* part, E, on the free-form surface. This part is
used to retrieve the Marketing_info information of the selected
property.

6 Add a Property_log* part, E on the free-form surface. This part is
used to retrieve the Property_log information of the selected prop-
erty.

7 Add two IMenu* parts on the free-form surface.

8 Add three IMenultem* parts on each IMenu* and change their
labels as shown in Figure 104 on page 269.

Note: Reverse highlighted letters are keyed to Figure 104 on page 269.

Once you have placed the parts on the free-form surface, connect them
as in Table 39.

Table 39. (Part 1 of 2) Connecting Parts to Retrieve Property Information

Key Connection Description

E] selectedElement i this Property_ad_log is a placeholder
for the property selected in the
container.

270 VisualAge for C++ for OS/2

ApropertysearchBesultview

Table 39. (Part 2 of 2) Connecting Parts to Retrieve Property Information

Key Connection Description

EI I property_id i property_id Synchronize the value of each
(from Property) identifier for the retrieve. These

I property_id i address_id identifiers are selected as Data
(from Property_address) identifiers in the notebook set-

I property_id i multidoc_id tings of each relational table (see
(from Multidoc) Chapter 6, "Mapping Relational

I property_id i property_id Tables Using Data Access
(from Marketing_info) Builder," on page 127).

I property_id i property_id
(from Property_log)

Note: You must draw the connections of step 2 before drawing the connec-
tion of step 3.

E] I commandEvent i retrieve Retrieve each row according to
(from Property) the identifier value.

I commandEvent i retrieve
(from Property_address)

I commandEvent i retrieve
(from Multidoc)

I commandEvent i retrieve
(from Marketing_info)

I commandEvent i retrieve
(from Property_log)

E menu i this Attach Menul to the container

E] menu i this Attach Menu2 as a submenu of
the Open menu item.

Note: Reverse highlighted numbers are keyed to Figure 104 on page 269. To
keep the drawings simple, we do not key all connections.

Usingi an Object Factory to Update the Database

Once the information is retrieved, it can be updated. To update the
property selected in the container, ApropertysearchResultview collab-
orates with Apropertysearchupdateview. The collaboration is based
on a "use" relationship: ApropertysearchResultview uses the
Apropertyupdateview part to provide an updating function from its
container. ApropertysearchResultview activates the collaboration by
creating an instance of Apropertyupdateview. The property informa-
tion is the link attribute between the two parts. It is transmitted dur-
ing the instance creation (Figure 105).

Chapter 9. Connecting the Parts 271

ApropertysearchBesultview

To create an instance of a part, use an IVBFactory part (this part is
available from the palette in the fl4lodezs category). Factory parts
enable your application to dynamically create a visual or a nonvisual
part. This differs from parts that are added to the free-form surface
and created statically when the application starts.

Like variable parts, factory parts are placeholders for other parts.
Each factory part must be set to the type of the class it represents. The
factory part works in tandem with a variable part that represents the
instance created. You have to use variable parts with factory parts
each time you access the attributes or activate a method of the
instance created. Unlike variable parts, factory parts run a creofe
method, which in turn runs the corresponding part class constructor,
creating a new instance.

You can set up the instance attributes during the create call in two
Ways:

I You provide the factory part with the required attribute values,
using parameter connections. In this case, the connections are
triggered within the creczfe method but after executing the part
constructor. The factory creates as many different instances as the
attribute values supplied by the parameter connections (see con-
nection E in Table 40 on page 273).

I You set the attribute values in the settings notebook of the factory.
In this case the parameters are passed to the class constructor.
The factory creates a cZo7te of the same class each time the new
action is triggered.

272 VisualAge for C++ for OS/2

ApropertysearchBesultview

\\ #
o#rty pro

Ei-I:
EE= --````

:ffi----`=ffi

\:`... `.\ / ,./ ..,/i _,,,

[ffijE

Datastore Prope rtyu pdatevlewFEictory Propertyup datevl ew Pro p_ad_I og

Figure 105. Updating a property

Using factory parts involves the following steps:

1. Adding and setting the factory part
2. Adding and setting the variable part
3. Connecting the event to the factory part
4. Connecting the factory part to its variable part

Table 40 presents step-by-step instructions for using a factory of
Apropertyupdateview to update the property information.

Table 40. Updating the Database

Step Action

1 Add an IVBvariablepart* part, E, to the free-form surface and
change its type to IDatastore*. This variable represents the data-
base connection. It is transmitted to Apropertyupdateview to com-
mit the database transaction.

2 Add an IVBFactory* part, E, to the free-form surface and change its
type to Apropertyupdateview*. This factory object enables cre-
ation of an instance of Apropertyupdateview dynamically.

Chapter 9. Connecting the Parts 273

Apropertysearchpesultview

Table 40. Updating the Database

Step Action

3 Add an IVBvariablepart* part, E, to the free-form surface andchangeitstypetoApropertyupdateview*.ThisvariablerepresentstheApropertyupdateviewinstance.

Note: Reverse highlighted letters are keyed to Figure 105 on page 273.

Once you have placed the parts on the free-form surface, connect them
as in Table 41.

Table 41. (Part 1 of 2) Connecting Parts to Update Property Information

Key Connection Description

I commandEvent i new Create an instance of
Apropertyupdateview.

E] I property i this Thansmit each part as a parame-
I property_address i this ter to the factory for update.
I multidoc i this
I marketing_info i this
I property_log i this

E owner i this Apropertyupdateview is shown
modally, and the frame window
is its owner.

E this i dBConnection 'Thansmit the database connec-
tion to Apropertyupdateview.
dBConnection is a variable pro-
moted in Apropertyupdateview.

Note: The order of the next five connections is crucial!

E I newEvent i this Associate the instance with the
I newEvent i setFocus factory. Apropertyupdateview
I newEvent i showModally is shown modally. The window
I newEvent i deleteTarget instance is deleted when it

closes.

E commandEvent i select Refreshes the container after
the update.

E Connect the this attribute of the Clause is given as the parame-
variable to the clause parame- ter for the connection.
ter of the connection E.

274 VisualAge for C++ for OS/2

ApropertysearchBesultview

Table 41. (Part 2 of 2) Connecting Parts to Update Property Information

Key Connection Description

Note: Reverse highlighted letters and numbers are keyed to Figure 105 on
page 273. To keep the drawings simple, we do not key all connections.

Ensure that the event-to-action connections from the menu item and
Apropertyupdateview instance are in the proper order. To check the
order of connections drawn from a part, use the Z3eorder Co7?7?ec£Zo7is...
option from its pop-up menu.

Deleting a Property

In this section we describe how to implement the delete option of the
container pop-up menu (see Figure 106). First we list the parts
involved, then we list all of the connections between the parts. For
clarity, we do not represent all of the parts and connections that have
been added and drawn in the preceding figures.

` I --``- _-`-:-=`_--

E`:```\``:dr````--fudi
Pr#rty` Pr:Frfu_add,:9Ss'

``` ,,,,,

DeleteDlalog

Figure 106.   Deleting a property

Chapter 9.  Connecting the  Parts 275

dr`~ i,=`ffi`  -:-,.#ffi       E
lultl,dgL'`   Markejj tg=Tnto      PrLiperty_log

-. _                 _ .--,

IL`E

`:I:¥:fafl_E_+fffii
i-I

DeleteDlalogFactory        Prop_ad_log

EE



Apropertysearchpesultview

Add   the   subparts   to   ApropertysearchResultview   as   shown   in
Table 42.

Table 42.  Adding Parts to Delete a Property from the Database

Step Action

1 Add an IVBFactory* part, E], to the free-form surface and change itstypetoADeleteDialog*.ThisfactorycreatesaninstanceofADelete-

Dialog dynamically.

2 Add an IVBvariablepart* part, E, to the free-form surface and
change its type to ADeleteDialog*. This variable represents theADeleteDialoginstance.

Note:  Reverse  highlighted  letters  are  keyed  to  Figure 106.  To  keep  thedrawingssimple,wedonotkeyallconnections.

When the subparts are in place, connect them to implement the logic
of the delete option (see Table 43).

Table 43. (Part 1 of 2) Connecting Parts to Delete a Property from the
Database

Key Connection Description

E selectedElement i this Propertyupdateview is a place-
holder for the property selected
in the container. Note that this
connection already has been
drawn in Table 38 on page 269
(see connection E],.

Note: The order of the next two steps is crucial!

E I  commandEvent i retrieve Retrieve each row according to
(from Property) the identifier value.

I  commandEvent i retrieve
(from Property_address)

I  commandEvent i retrieve
(from Multidoc)

I  commandEvent i retrieve
(from Marketing_info)

I  commandEvent i retrieve
(from Property_log)

E commandEvent i new Create an instance ofADelete-
Dialog.

Note: The order of the next two steps is crucial!

276 VisualAge for C++ for OS/2



Apropertysearchpesultview

Table 43. (Part 2 of 2) Connecting Parts to Delete a Property from the
Database

Key Connection Description

E I  newEvent i this Associate the instance with the
I  newEvent i setFocus factory. ADeleteDialog is shown
I  newEvent i showModally modally. The window instance is
I  newEvent i deleteTarget deleted when it closes.

E newEvent i select Select action is run to refresh the
container after the delete.

E this i clause The clause is given as the
parameter for the connection.

a property_id i recordlDText
'Thansmit the record identifier to
the delete dialog window.

Note: The order of the next two steps is crucial!

E I  PushButtonoKButtonclick- Delete each record in each table.
Event i delete
(from Property)

I  PushButttonoKButton-
ClickEvent i delete
(from Property_address)

I  PushButtonoKButtonclick-
Event i delete
(from Multidoc)

I  PushButtonoKButtonclick-
Event i delete
(from Marketing_info)

I  PushButtonoKButtonclick-
Event i delete
(from Property_log)

E] PushButtonoKButtonclick- Commit the transaction when
Event i commit done.

Note: Reverse highlighted letters and numbers are keyed to Figure 106 on
page 275. To keep the drawings simple, we do not key all connections.

Ensure that the event-to-action connections from the menu item and
the push button of Apropertyupdateview are in the proper order. To
check  the  order,  use  the Reorder  Co7L7tec£Zo77s...  option  from  the  part
selected.

You can now save your part  and generate its  code.  From the Visual
Builder  window,  select  ScLz/e  cL7?d ge77erczfe  i  PcL7-£  soL4rce  in  the  Fjze
pull-down menu.

Chaptei. 9.  Connecting the Parts 277



ApropertyDelete

As you may notice, the view is getting a bit confusing, and the parts
are  cluttered  with  too  many  connections.  You  can  hide  connections
between  parts  by  using  the  Brozuse  Co7t7?ec£Zo7ts  option  from  every
part's menu. With this option, you can control the visibility of connec-
tions from and to the selected part. If you use the Browse Connections
option from the free-form surface, you can hide all of the connections
of the Composition Editor.

In our view, it is quite easy to identify some nonvisual parts that work
exclusively together and could be gathered into one part. In the next
section, we show you how to aggregate several nonvisual parts to sim-
plify the view.

ApropertyDelete
ApropertyDelete is a nonvisual part created to encapsulate the opera-
tions necessary to delete a property from the database. To create this
aggregate part, use the Composition Editor and build its logic visually
(see Figure 107).

|TE  E  pr.p[efii.g  ,\-\± ,[a:.,L
M@rketlng_Info               E

Property

Figure 107.   Building ApropertyDelete

278 VisualAge for C++ for OS/2



ApropertyDelete

Using the Composition Editor to Build a Nonvisual Part

Follow the step-by-step instructions in Table 44 to build the nonvisual
part and its components.

Table 44. (Part 1 of 2) Adding Parts to Build ApropertyDelete

Step Action

1 From the Visual Builder window, create a nonvisual part as follows:

Field                      Value
Class name              ApropertyDelete
Description               Nonvisual part to delete properties
File name                 VRPROP.VBB
Part type                  Nonvisual part
Base class                 IstandardNotifier

The Part Interface Editor is displayed.

2 From the Event page of the Part Interface Editor, create a new
event, deleteEvent, using the default settings. This event triggers
the delete action over the five tables. To send this event to the sub-
parts that make up ApropertyDelete, you create, in step 3, anactionthatsendsadeleteEventnotificationtoeachsubpart.When

notified, each subpart executes the delete action.

3 From the action page of the Part Interface Editor, create a new
action, delete, using the default settings. This action will be called
from the commandEvent of ApropertysearchResultview.

4 Switch to the Composition Editor.

5 Add an IVBvariablepart* part to the free-form surface and change
its type to Prop_ad_log*, E. This variable receives its value from the
Prop_ad_log variable part ofApropertysearchResultview and must
be promoted.

6 Promote the fhfs attribute of the Prop_ad_log* variable part.

7 Add a Property* part to the free-form surface, E.

8 Add a Property_address* part to the free-form surface, E.

9 Add a Multidoc* part to the free-form surface, E.

10 Add a Property_1og* part to the free-form surface, E].

11 Add a Marketing_info* part to the free-form surface, I

Chapter 9.  Connecting the Parts 279



ApropertyDelete

Table 44. (Part 2 of 2) Adding Parts to Build ApropertyDelete

Step Action

12 Add an IVBvariablepart* part to the free-form surface, E, andchangeitstypetoIDatastore*.Thisvariablereceivesthedatabase

connection from ApropertysearchResultview and must be pro-
moted.

13 Promote the ffazs attribute of the IDatastore* variable part.

Note: Reverse highlighted letters are keyed to Figure 107 on page 278.

To   connect   the   parts   to   each   other,   refer   to   the   original   view,
ApropertysearchResultview, and to Table 45.

Table 45. (Part 1 of 2) Connecting Parts to Build ApropertyDelete

Key Connection Description

E I  property_id i property_id Synchronize the value of each
(from Property) identifier for the retrieve (only

I  property_id i address_id the first connection is keyed in
(from Property_address) Figure 107 on page 278).

I  property_id i multidoc_id
(from Multidoc)

I  property_id i property_id
(from Marketing_info)

I  property_id i property_id
(from Property_log)

E I  deleteEvent i retrieve Retrieve each record from each
(from Property) table (only the first connection is

I  deleteEvent i retrieve keyed in Figure 107 on page
(from Property_address) 278).

I  deleteEvent i retrieve
(from Multidoc)

I  deleteEvent i retrieve
(from Marketing_info)

I  deleteEvent i retrieve
(from Property_log)

280 VisualAge for C++ for OS/2



ApropertyDelete

Table 45. (Part 2 of 2) Connecting Parts to Build ApropertyDelete

Key Connection Description

E] I  deleteEvent i del Delete the property across the
(from Property) five tables (only the first connec-

I  deleteEvent i del tion is keyed in Figure 107 on
(from Property_address) page 278).

I  deleteEvent i del
(from Multidoc)

I  deleteEvent Li del
(from Marketing_info)

I  deleteEvent i del
(from Property_log)

E deleteEvent i commit Commit the transaction in the
database.

Note: Reverse highlighted numbers are keyed to Figure 107 on page 278.

Ensure that the event-to-action connections used in ApropertyDelete
are in the proper order. To check the order, use the Reorder Co7t77ec-
£jo7?s... option from the free-form surface (see Figure 108).

Figure 108.   Order of connections for ApropertyDelete

Notice that the sequence of the part's logic is directly expressed in this
window. You can follow, line by line,  which statement is executed to
delete  each  part  of the  property  information  in  the  five  relational
tables.

Chapter 9. Connecting the Parts 281



ApropertyDelete

Before saving and generating the code, switch to the Class Editor. In
the  User fzzes  a.7?cZz4ded  Z7? ge7?ercI£Zo7i  group box,  type in the  following
file names (see Figure 109):

I  User .hpv file: vrppdel.hpv
I  User .cpv file: vrppdel.hpv

Figure 109.   Detail of the Class Editor

You can save and generate the part's source and the part's features.
Then, from your favorite editor, edit the  vrppdel.cpv file and add the
code in Figure 110 to the delete method:

noti. fyobservers ( I Noti. fi. cati. onEvent (ApropertyDel ete : : del eteEventld ,   *thi. s) )

Figure 110.   Code to Generate deleteEventld

When notifyobservers is called, it notifies the event-to-action connec-
tions of ApropertyDelete, which in turn triggers the retrieve, delete,
and commit actions on the database.

To  use  ApropertyDelete,  just  drop  it  on  the  free-form  surface  of
ApropertysearchResultview  and  connect  the  parts  as  follows  (see
Figure 111):

1.  Connect the ffafs attribute of the Prop_ad_log variable to the pro-
pAdLog promoted variable part of ApropertyDelete, E.

282 VisualAge for C++ for OS/2



Apropertysearchparameterview

2.tchoenEf8toihneecft?::;::riboi:ed:fa:|Paeb|::gftnonfe|fiEor:pve::;aDb::etpe:rE.to

3.  Connect  the  pushButtonoKButtonclickHvent  event  of  the
ADeleteDialog variable to the del action of ApropertyDelete, a.

-¥rffij
Datastore                       De|eteD|a|og                        DeleteDlalogFactory           prop_ad_log

Figure 111.   Using ApropertyDelete part

Notice that the Data Access  Builder parts have been removed (they
are still necessary for the update function). You can embed ADelete-
Dialogview factory and its instance in ApropertyDelete part to encap-
sulate   the   entire   process.   You  just  need   a   connection  from   the
commandEvent  of  the  delete  menu  item  to  the  delete  action  of
ApropertyDelete.

Apropertysearchparameterview
Apropertysearchparameterview is used to build a query on property
criteria. The query is then sent to ApropertysearchResultview to be
executed against the database.

The query is the link attribute between Apropertysearchparameter-
View and ApropertysearchResultview and can be traced in the design
object model of the application (see Figure 41 on page 102).

Chapter €).  Connecting the  Parts 283



Apropertysearchparameterview

When the user clicks on the Sec!rch push button in Apropertysearch-
Parameterview,  the  query  is  sent  as  a  clause  to  Apropertysearch-
Resultview.  ApropertysearchResultview  collaborates  with  a  Data
Access Builder part,  PropertyManager, to execute the query against
the  database.  Upon  completion,  the  container  held  by  Aproperty-
SearchResultview is updated with the matching properties.

The query is built according to the following property criteria:
I  Area
I  Price range
I  Size range
I  Number of bedrooms
I  Number of bathrooms

The user can choose to search a property by using all or some of the
criteria. The user can choose each criterion involved in the query by
selecting its corresponding check box. After selecting a check box, the
user can specify a value for the criterion.

Because Apropertysearchparameterview includes many connections,
let us build it in two phases:

I  In the first phase ("Managing the User Input" on page 284), we
show you how to use a check box control and an IVBBooleanpart
to control the user input.

I  In  the  second  phase  ("Building  the  Clause"  on  page  285),  we
explain how to build the clause from the user input by using an
event-to-member function connection.

Managing the User Input

You manage the user input by using a check box control as a switch.
This switch enables or disables user access to the criteria entry fields.
To react to the selection of the check box, you use an IVBBooleanpart
part that can be found in the VBSAMPLE.VBB. file. This parts holds a
Boolean value and can react according to its value (for more informa-
tin., cousnlt the Vi,sual Bui,I,der Parts Reference) .
'I\vo events are relevant:

valueFalseEvent        Enables the part to notify other parts as soon
as its value is set to FALSE

value'ThueEvent         Enables the part to notify other parts as soon
as its value is set to TRUE

284 VisualAge for C++ for OS/2



Apropertysearchparameterview

The  check  box,  in  turn,  is  a  two-status  control  that  can  be  either
selected or unselected.  If it is  selected,  its sezecfed  attribute holds  a
TRUE value. If it is not selected, it holds a FALSE value.

The idea is now quite simple. We use the number of bedrooms crite-
rion to illustrate the description (see Figure 112). The same building
process applies to the other criteria. Here are the steps:

1.   Connect the sezectecz attribute  of the  check box (E) to the I;azz4e
attribute of IVBBooleanpart (E) with an attribute-to-attribute con-
nection (E],.

2.  Connect  the valueFalseEvent  event  of IVBBooleanpart  to  the
disable action of the entry field (E) to prevent the user from typ-
ing in a value (E]).

3.  Connect  the  value'ThueEvent  event  of IVBBooleanpart  to  the
enable action of the entry field to  enable the user to enter the
number of bedrooms (E).

4.  Connect  the  valueThueEvent  event  of IVBBooleanpart  to  the
setFocus action of the entry field to position the cursor (E]).

E

fa`\

-E,-~::.::--di:-`¥eEcted

F±gure +12.   Number of Bedrooms Sel,ecti,on

When  the  application  starts,  the  input  controls  (entry  fields,  drop-
down list box,  and  spin buttons)  are  disabled because  their e7}cbbzed
check box is deselected on the Control page of their settings notebook
(see ``Apropertysearchparameterview" on page 188).

Building the clause

The clause is built from the contents of the input controls whose corre-
sponding check box is selected.

Chapter 9. Connecting the Parts 285



Apropertysearchparameterview

You use an IVBstringpart part to represent the clause. This part can
be found in the VBSAMPLE.VBB file. The part is initialized with an

%enntc-:On-nine:a::,}of=npc:1;Oen2%Oon::itfcoonniseec:i:¥SE±:#Tii¥ee]mLge:nFpuangc:
290), which triggers  a member function of Apropertysearchparame-
terview: Bz4jzczczc[z4se. The member function accesses:
I  The check boxes to verify that they are selected
I  The entry fields related to the check boxes that are selected
I  The Clause part to set its contents

Because Buildclause is a member function of Apropertysearchparam-
eterview, each subpart can be accessed from Buildclause by its name
prefixed with an i (see Figure 113).

Boolean   addAnd   =   false;
target  i   iclause  i  assi.gnTextTOEmpty();

/*  area   i.s   selected   */
if(   iAreaselected  i  value()   )    {

i.Clause  i  appendText(''area  =   "   +  1.Area  i  text()   +   "");
addAnd   =   true;

)

/*   bedrooms   i.s   selected   */
i.f(   I.Bedroomsselected   i   value()   )

I.f (   addAnd   )
i.Clause   i   appendText(.I   and   bedrooms   =   "   +

Istri.ng(i.Bedrooms   i   value()));
else   (

I.Clause   i   appendText(''bedrooms   =   "   +
Istri.ng(i.Bedrooms   i   value()));

addAnd   =   true;

)

/*   pri.ce   i.s   selected   */
®®,,,

I.f   (addAnd)
1.Clause   i   appendText("   and   status   =   'AVAILABLE");

else
i.Clause   i   appendText("status   =   'AVAILABLE");

return   addAnd;

286

Figure 113.   Code Fragment of Buildclause Member Function

The  Buildclause  member  function  is  declared  as  a  public  member
function  with  the  following  prototype:  Boolean  Buildclause().  The
return  code  enables  you  to  check  whether  the  clause  is  empty  (see
"Using a Message Box to Display the Clause" on page 292). Notice that
we could have declared the member function with input parameters,
such as the price range or the size range, and transmitted the parame-
ter values through parameter connections from the entry controls to

VisualAge for C++ for OS/2



Apropertysearchparameterview

the  event-to-member  function  connection.  The  member  function  is
declared  in  the  vrpsrcv.hpv  file  and  defined  in  the  vrpsrcv.cpv  file.
These two files must be added to the definition of Apropertysearchpa-
rameterview by filling in the corresponding entry fields in the  User
f£Zes  Z7?cZz4ded jJ? ge77erc[£Zo77  group box (see "Using the Member Func-
tion Connection" on page 260).

The  complete  code  of the  Buildclause  member  function  is  given  in
Appendix E on page 357.

Notice that the code remains simple and does not include all controls
that would be necessary for a real application.

Apropertysearchparameterview collaborates with Apropertysearch-
Resultview to execute the query against the database. Similarly to the
relationship   between  ApropertysearchResultview   and  Aproperty-
Updateview or ApropertyDeleteview, the collaboration is based on a
use  relationship:  Apropertysearchparameterview  uses  the  SELECT
properties  service  of ApropertysearchResultview.  Apropertysearch-
Parameterview activates the collaboration by creating an instance of
ApropertysearchResultview. The clause is the link attribute between

::::eecttToon pfirit:.Flit;i:etE::so=i;taegde %i,:g the instance creation (see

To  create  an  instance  of ApropertysearchResultview,  use  an  IVB-
Factory part (see "Using an Object Factory to Update the Database"
on page 271).

To refine the view, add the subparts required as shown in Figure 114
and the step-by-step instructions in Table 46.

Chapter 9. Connecting the Parts 287



Apropertysearchparameterview

E#E     [#]E      EE         ffiE
Clause               DBConnection              VBFlyText              LlsLareaManager

n    ,_=§
Areaselected

EE#
Priceselected

EE#
Sizeselected

E    r=.1
Bedroomsselected

E      E=fa

Bathroomsselected

[i] E                        ed# E
Pro pertys e EirchBesultview                      Pro pertysearchBes ultviewFactory

Figure 114.   Subparts of Apropertysearchparameterview

Table 46.  Adding Parts to Build Apropertysearchparameterview

Step Action

1 Open the Apropertysearchparameterview part.

2 Add five IVBBooleanpart* parts on the free-form surface and
change their names as follows:

I   `, Areaselected
I   :, Priceselected
I    , Sizeselected
I   I, Bedroomsselected
I    , Bathroomsselected

3 Add an IDatastore* variable part, E to the free-form surface. This
variable is transmitted to the factory of ApropertysearchResult-
View.

4 Add a List_areaManager* part, E. This part is used to list the area
available from the database, in the area drop-down list box (use
Opfjo7? i Add Pclr£.. . from the Composition Editor).

5 Add an IVBFlyText* part, n, to the free-form surface. This part is
used to display the fly-over long-text help in the window info area.

288 VisualAge for C++ for OS/2



Apropertysearchparameterview

Table 46.  Adding Parts to Build Apropertysearchparameterview

Step Action

6 Add short and long fly-over texts to the check boxes, entry fields,
and push buttons.

7 Add an IVBstringpart* part, E], to the free-form surface. This part
holds the clause built by the custom logic connection.

8 Add an IVBFactory* part, E, to the free-form surface. This part cre-
ates an instance of ApropertysearchResultview.

9 Change the factory type to ApropertysearchResultview*.

10 Check the Auto delete mark on the General page of the factory
notebook settings. The window instance of ApropertysearchResult-
View is deleted automatically when it closes. The Auto delete check
mark must be checked only for visual part instances that are shown
modelessly.

11 Add an ApropertysearchResultview* variable part, E, to the free-
form surface. This part represents the instance created by the fac-
tory.

Note: Reverse highlighted letters are keyed to Figure 114 on page 288.

Once you have placed the subparts on the free-form surface, you can
draw the connections as shown in Figure 115 and Table 47.

Chapter 9.  Connecting the  Parts 289



Apropertysearchparameterview

® pee.

I..i..,...,..

``-```T' `-``

>.
-`, . -, ,-, ..i-         .`-'':...-~'..- Areas electe

Pri±'g' :ari'g€

'-,JJ,. `-  4ffi
`~=-i.```~...                Pricesele ct€-

•  .`  .  ., I.i.

i.i::,i.:';:;::,;I;i:g.'',`t#

3S - """i'

SizeselEcte<ianagerBathroomssele

- rff5...,i. •::::::..:i                i %S

.+,,,,:^^^^^^r+:I:^^^f:r<

a-,« .:a:ft#
£

fro

`
\                ap                                                            -````.` ``

rfpqQap_...`DBConn \\\E          I              Effie=¥n\\\VBFlyTerdListareali\

a-------------F\\\-\\\ EE

Figure 115.   Apropertysearchparameterview: The Big Picture

Table 47. (Part 1 of 3) Connecting Parts to Build
Apropertysearchparameterview

Key Connection Description

E] I  selected (checkBoxArea) i Control the input for the area.
value (Areaselected)

I  valueTTueEvent i enable
I  valueThueEvent i setFocus
I  valueFalseEvent i disable

E] I  selected (CheckBoxprice) i Control the input for the price
value (Priceselected) range.

I  valueTTueEvent i enable
(Minimumprice)

I  valueTTueEvent i enable
(Maximumprice)

I  valueTTueEvent i setFocus
(Minimumprice)

I  valueFalseEvent i disable
(Minimumprice)

I  valueFalseEvent i disable
(Maximumprice)

290 VisualAge for C++ for OS/2



Apropertysearchparameterview

Table 47. (Part 2 of 3) Connecting Parts to Build
Apropertysearchparameterview

Key Connection Description

E I  selected (CheckBoxsize) i Control the input for the size
value (Sizeselected) range.

I  valueTlueEvent i enable
(Minimumsize)

I  valueTTueEvent i enable
(Maximumsize)

I  valueTYueEvent i setFocus
(Minimumsize)

I  valueFalseEvent i disable
(Minimumsize)

I  valueFalseEvent i disable
(Maximumsize)

E] I  selected(CheckBoxBed- Control the input for the number
rooms)  i  value  (Bedrooms- of bedrooms .
Selected)

I  value'ThueEvent i enable
I  value'ThueEvent i setFocus
I  valueFalseEvent i disable

E I  selected (CheckBoxBath- Control the input for the number
rooms) i value (Bathrooms- of bathrooms .
Selected)

I  valueTTueEvent i enable
I  valueTTueEvent i setFocus
I  valueFalseEvent i disable

Note: The order of the next two connections is crucial!

E buttonclickEvent i Build- Build the clause and initialize
Clause() the IVBstringpart.

B buttonclickEvent i new Create an instance ofAproperty-
SearchResultview.

E] buttonclickEvent i close Close the window if user selects
the Cancel option.

E] items i items Synchronize the records of the
relational view with the con-
tents of the drop-down list box.

EE ready i refresh Load the rows of the List  area
table into the IVsequence held
by the List_areaManager* part.

Chapter 9.  Connecting the Parts 291



Apropertysearchparameterview

Table 47. (Part 3 of 3) Connecting Parts to Build
Apropertysearchparameterview

Key Connection Description

E DBConnection i this 'Thansmit the database connec-
tion to ApropertysearchResult-
View. DBConnection is a variable
promoted in Apropertysearch-
Resultview.

EE Clause i this 'Thansmit the clause to
ApropertysearchResultview.
Clause is a variable promoted in
ApropertysearchResultview.

Note: The order of the next three connections is crucial!

E I  newEvent i this Associate the instance with the
I  newEvent i setFocus factory. ApropertysearchResult-
I  newEvent i visible View is shown modelessly.

EE this i longTextcontrol Set the target of the fly-over help
to the window info area.

Note: Reverse highlighted numbers are keyed to Figure 115 on page 290. To
keep the drawings simple, we do not key all connections.

For additional practice, you may want to build a nonvisual part to gen-
erate the clause.  For example, you can consider a part made  of five
attributes  (area,  price,  size,  bedrooms,  bathrooms,  and  clause).  The
cZcLz4se  attribute is updated dynamically according to the value of the
other   attributes   (see   Chapter 8,   "Creating   Nonvisual   Parts,"   on
page 213 for a similar nonvisual part). To use the part in Aproperty-
SearchResultview, connect each fe#£ attribute from the drop-down list
box,  entry  fields,  and  numeric  spin  buttons  to  their  corresponding
attribute in the nonvisual part and connect the czcbz4se attribute of the
nonvisual part to the Clause parameter of PropertysearchResultview-
Factory.

You can display the clause before it is used by PropertysearchResult-
ViewFactory. In the next section, we show you how to use a message
box to display the clause.

Using a Message Box to Display the clause

A message box can be a useful tool for debugging your program when
things go wrong (see Figure 116). You can use a message box as a sub-
stitute for the standard prz7?£f function to display variable or parame-

292 VisualAge for C++ for OS/2



Apropertysearchparameterview

ter values at run time. Using the message box and the Boolean part,
you can manage the behavior of the box to display all types of mes-
sages ranging from informative to critical.

E=fa
#clause

\\ \ `feERE   n

MessageBoxsearchclause

PropertysearchBesultviewFactory       PropertysearchBesultview

Figure 116.   Using a Message Box to Display the Clause

To  display  the  SELECT  clause  in  a  simple  message  box,  follow  the
step-by-step instructions in Table 48.

Table 48.  Using a Message Box to Display the Clause

Step Action

1 Add an IMessageBox* part, E, to the free-form surface.

2 Connect the buttonclickEvent event of the Secbrch push button to
the show action of the message box, E].

3 Connect (see E]) the text attribute of the Clause part to the messageparameteroftheconnection,E].

4 Open the settings of the connection E] and click on the Se£ PorclJ7ie-
£ers... push button. In the dialog box, select ZJiformcI££oJi in the
severity list box (see Figure 117). The severity parameter associates
an icon type with the message box.

Note: Reverse highlighted numbers are keyed to Figure 116.

Chapter 9.  Connecting the Parts 293



Apropertysearchparameterview

Figure 117.   Message Box parameter

Let us improve our part to display a warning message each time the
clause is empty. In the following example, you use the same message
box to display an information message when the clause is not empty
and a warning message when the clause is empty (Figure 118).

294 VisualAge for C++ for OS/2



Apropertysearchparameterview

\`!

RE
DBConnefa\on       `               /Clause              ClauseEmpty       MessageBoxsearchclause

/
lEE_

EE-mi

PropertysearchBesultviewFactory       PropertysearchFlesultview

Figure 118.   Using Message Box to Display a Warning Message

You use the return code (see Figure 113  on page 286) of the member
function connection to decide whether or not the clause is empty:
D  The clause is empty if the return code is equal to FALSE.
I  The clause is not empty if the return code is equal to TRUE.

The IVBBooleanpart part provides you with the means to trigger the
show action of the message box. Use an IVBBooleanpart part to dis-
play the warning message, as shown in the step-by-step instructions
in Table 49.

Table 49. (Part 1 of 2) Using Message Box to Display a Warning Message

Step Action

1 Add an IMessageBox* part, E, to the free-form surface.

2 Add an IVBBooleanpart* part, E, to the free-form surface.

3 Open the IVBBooleanpart* part settings and set its value to TRUE
in selecting the zjcizzte check box.

4 Connect the c[c££oJ®Resz4Zf attribute of the member function con-
nection to the tJc!Zz4e attribute of the IVBBooleanpart* part, E].

Chapter 9.  Connecting the Parts 295



Apropertysearchparameterview

Table 49. (Part 2 of 2) Using Message Box to Display a Warning Message

Step Action

5 Connect the valueFalseEvent event of the IVBBooleanpart* part
to the show action of the message box, E].

6 Open the settings of the connection E] and set the values as follows:

Parameter           Value
message                     Clause is empty! All records will be retrieved.
severity                     Warning

When the clause is empty, the IVBBooleanpart* part value is set to
FALSE and triggers the display of the warning message.

7 Connect the buttonclickEvent event of the Sec}rch push button to
the assignvalueTo'Thue action of the IVBBooleanpart* part, E].
This connection is necessary to reset the IVBBooleanpart* part so
that it can notify connection E] when the clause is empty. In effect, if
the IVBBooleanpart* part value is already FALSE and the Search
push button is clicked, connection E] does not change the IVB-
Booleanpart* part value when it triggers because it is already set to
FALSE. Thus, the Boolean part does not notify connection E], and
the warning message box does not show again.

Note: Reverse highlighted letters and numbers are keyed to Figure 118 on
page 295.

Let us now use the same message box to display the clause when it is
not  empty.  The  first  idea  that  comes  to  mind  is  to  reuse  the  IVB-
Booleanpart part to trigger the show action of the message box when-
ever   the   clause   is   not   empty.   In   effect,   you   could   connect   the
valueThueHvent  event  of the  IVBBooleanpart  part  to  the  show
action  of the  message  box.  Unfortunately,  you  must  reset  the  IVB-
Booleanpart part to the FALSE value if you want the message box to
show when the clause is not empty two consecutive times. Thus, you
need another IVBBooleanpart part to activate the message box action
(Figure 119).

296 VisualAge for C++ for OS/2



Apropertysearchparameterview

`````-`          --`:``

De-

_---'es

`!:

.i-
•..;.i:i,±si,-ac...i..i;+±4±4i.±±rf++rf++...

-
' ,,,`

\-``````````
I,f' . ..,,,,,,I E c,auseEmpty , ,a,i;--

'1I

I.II

d\\\

RE

PropertysearchBesultviewFactcJry Propertysearch F\esultvlew

Figure 119. Message Box Displaying a Warning or Information Message

To display the clause in a message box when it is not empty, refine the
part as shown in Table 50.

Table 50. (Part 1 of 2) Using Message Box to Display a Warning or
Information Message

Step Action

1 Add another IVBBooleanpart* part, E, to the free-form surface.

2 Open the IVBBooleanpart* part settings and set its value to
FALSE in selecting and deselecting the I/cizzte check box. In effect,
to ensure that initial part values are set the way you expect, always
explicitly set them. When you drop the IVBBooleanpart* part on
the free-form surface, its value is undefined. When you open the
settings from the part, the check box for the value is not selected.
The deselected check box indicates only that the value has never
been set. To set it to FALSE, you must select and deselect the check
box.

3 Connect the clc#o7aResz4Zf attribute of the member function con-
nection to the value attribute of the IVBBooleanpart* part, E].

Chapter 9. Connecting the Parts 297

AUpLoadview

Table 50. (Part 2 of 2) Using Message Box to Display a Warning or
Information Message

Step Action

4 Connect the value'ThueEvent event of the IVBBooleanpart* part
to the show action of the message box, E].

5 Open the settings of connection E] and set the severity parameter to
information.
When the clause is not empty, the IVBBooleanpart* part value is
set to TRUE and triggers the display of the information message.

6 Connect (see E) the fe#£ attribute of the Clause part to the messageparameterofconnectionE].

7 Connect the buttonclickEvent event of the Secbrch push button to
the assignFalseTOFalse action of the IVBBooleanpart* part, E.
This connection is necessary to reset the IVBBooleanpart* part sothatitcannotifyconnectionEwhentheclauseisnotempty.

Note: Reverse highlighted letter and numbers are keyed to Figure 119 on
page 297.

You can now save your part and generate its code. From the Visual
Builder window, select Sczzje ci7?d ge77erc}£e i Pclrf soz4rce in the FZze
pull-down menu.

AUpLoadview
AUpLoadview is a generic view that enables the user to export tables
in a specific directory. A command file is called for this purpose. There
is one command file per subsystem:

I BUYER.CMD command file generates export files for the tables
related to the buyer information.

I PROPERTY.CMD command file generates export files for the
tables related to the property information.

I SALE.CMD command file generates export files for the tables
related to the sale transaction information.

In addition, the UPLOAD.CMD command file generates the export
files of all relational tables.

298 VisualAge for C++ for OS/2

AUpLoadview

The export files are generated in the upload directory. The user sets
the directory in two ways:
I By selecting the settings option from the menu bar of the Visual

Realty application main window
I By selecting the settings option from the menu bar of the service

subsystem window

AUpLoadview is reused in all subsystems. Because a different com-
mand file is used for each subsystem, it is the responsibility of each

#esnysrteeq=irt:dpi°#f±engApuaprL,°E:d±¥±ueswedwtL:t±o#ethce°:roeftmca°nmd¥Lfen:afi±:
for this purpose. The text attribute of this part is promoted. Each sub-
system which calls AUpLoadview initialized this attribute by provid-
ing the factory of type AUpLoadview* with the corresponding value.

The upload directory is retrieved from the application profile setup in
ARealsettingsview (see "ARealsettingsview" on page 206 and
Figure 120).

Proflle Generatecommand

Figure 120. AUpLoadview

To build the AUpLoadview part, add the necessary subparts to the
free-form surface and make the connections as shown in Table 51.

Table 51. (Part 1 of 3) Building AUpLoadview Part

Step Action

1 Open the AUpLoadview part.

2 Add an Iprofile* part to the free-form surface, E. This part retrieves
the upload directory from the application profile.

Chapter 9. Connecting the Parts 299

AUpLoadview

Table 51. (Part 2 of 3) Building AUpLoadview Part

Step Action

3 Open the settings notebook of the Iprofile* part and set the fields
as follows:

Field Value
defaultApplicationName REAL
name REAL. INI

The application profile is set to REAL.INI, and its default applica-
tion name is REAL.

4 Add an IVBstringpart* variable part to the free-form surface, E,andpromoteitsfexfattribute.Thisvariablepartholdsthespecific

command file name that is to be executed. The file name is trams-
mitted by the calling view.

5 Add an stdlibsamples* part on the free-form surface, E. This part is
located in the VBSAMPLE.VBB file. It provides a wrapper to call
your own external functions, such as a command file or external C
routines.

6 Connect the buttonclickEvent event from the OK push button to
the action elementwithKey action of the profile part, E]. This
action retrieves the data associated with a corresponding key for a
specific application.

7 Open the settings of the connection E and set the fields as follows:

Field Value
key UPLOADPATH
applName REAL

The upload directory associated with the key UPLOADPATH is
retrieved from the REAL application name in the REAL.INI pro-
file.

8 Connect the buttonclickEvent event from the OK push button to
the appendText action of the IVBstringpart* part, E. This connec-
tion appends the upload path, given as a parameter, to the com-
mand file string.

9
!::::#:foact:zi:b"ui:s.:zc'.:tnt::t|Totnefr(os=ecco.nnnneecctj|P.nnE;.o#:
upload directory is given as a parameter to the connection to be
appended to the upload command.

10 Connect the buttonclickEvent event from the OK push button to
the system action from the systemcommand part E. This connec-
tion triggers the execution of the command file.

300 VisualAge for C++ for OS/2

AUpLoadview

Table 51. (Part 3 of 3) Building AUpLoadview Part

Step Action

11
Pr:=n:£tetchoen:fe#ognaEti:±ebeu::nf=::titohneE|:i±fi:L#:iteh:ofixi:it5±it=:e
is passed to the connection as a parameter for the system com-
mand.

12 Connect the buttonclickEvent event from the OK push button to
the close action of the frame window, E.

13 Connect the buttonclickEvent event from the CcI7tcez push but-
ton to the close action of the frame window, E.

Note: The order of connections E, E, E, and E is crucial! Reverse highlighted
letters and numbers are keyed to Figure 120 on page 299.

You can now save your part and generate its code. From the Visual
Builder window, select SclzJe ci7?d ge7?e7.cife i Pclrf soztrce in the Fjze
pull-down menu.

Building this part gives us the opportunity to introduce the stdlibsam-
ples part from VBSAMPLE.VBB. This part provides you with many
actions that correspond to the functions of the standard C library. You
can think of this part as a wrapper of the standard C library. To use
the part, just drop it on the free-form surface and connect an event of
your application to one of its actions. You may have to draw some
extra connections to provide the action with the necessary parameters.
If you look in VBSAMPLE.VBB, you will find other useful parts, such
as stdiosamples or mathsamples. The stdiosamples part is a wrapper
of the standard C input/output library; the mathsamples part pro-
wides you with a convenient way of calling general-purpose mathe-
matic functions.

You can do your "shopping" in this file, selecting the part that suits
your needs. You can browse the features of a part by using the Brozuse
PcLr£ Fecl£L4res option from the part's pop-up menu (see Figure 121).

Chapter 9. Connecting the Parts 301

ApropertyManagementview

addorReplaceElei
containsAppLicati
containsKegNam€
deleteELementwi
deleteElementwi
elementwithKeg
integerwithKeg
operator =

asDebuglnfo
asstring
defaultAppLicati
handle

numberofAppli
numberofKeus
sgstemprofile
this

virtual Istring name() const

the profiLe's f ile name

Figure 121. Browsing the Iprofile Part's Features

You can, for example, check whether a part has some specific
attributes that might be relevant in the context of your application
and whether these attributes can be updated by some set member
functions.

You cannot modify a part's feature from the browser. To modify a part's
feature, use the Part Interface Editor.

ApropertyManagementview
ApropertyManagementview is the primary view of the Property sub-
system. From this view, the user can access the main functions of the
subsystem: create a property, search a property, and generate export
files. Each option is associated with a graphic push button that trig-
gers the creation of an instance of Apropertycreateview, Aproperty-
SearchResultview, or AUpLoadview according to the option selected.
You use three factory parts to build this view. The visual part
instances created by each factory part are shown modally to the user
(Figure 122).

302 VisualAge for C++ for OS/2

ApropertyManagementview

Figure 122. ApropertyManagementview

To build ApropertyManagementview, follow the instructions in
Table 52.

Table 52. (Part 1 of 2) Building ApropertyManagementview Part

Step Action

1 Open the ApropertyManagementview part.

2 Add three Factory* parts to the free-form surface, E, E, E, and
change their respective type to Apropertycreateview*, Aproperty-
Searchparameterview*, and AUpLoadview*.

3 Add three IVBvariablepart* parts to the free-form surface, E, I, a
and change their respective type to Apropertycreateview*, Aprop-ertysearchparameterview*,andAUpLoadview*.DoubleclickonFandinitializege7?ercbfecom777cL7?dTexfwithPROPERTY.CMD(add

one trailing blank to prevent from concatenate the upload path
parameter when the appendText action is called in AUpLoad-
View).

4 Add an IVBFlyText* part to the free-form surface, E.

Chapter 9. Connecting the Parts 303

ApropertyManagementview

Table 52. (Part 2 of 2) Building ApropertyManagementview Part

Step Action

5 Add an IDatastore* variable part to the free-form surface, E. Thisvariablepartrepresentsthedatabaseconnectionestablishedwhen

the application starts. As explained in "Managing Database Con-
nection" on page 246, this database connection must be propagated,throughvariableparts,totheviewthatrequiresit.

6 Connect the buttonclickEvent event of the Crecife graphic push
button to the new action of CreateviewFactory, E].

7 Connect the buttonclickEvent event of the Sec!rch graphic push
button to the new action of SearchparameterviewFactory, E].

8 Connect the buttonclickEvent event of the UpZocrd graphic pushbuttontothenewactionofUpLoadviewFactory,E].

9 Connect the ffafs attribute of the IFramewindow* part to the
ozu7®er attribute of each factory part, E, E], E.

10 Connect each factory part to its corresponding variable with the fol-
lowing connections in the proper order, E, E, E]:

I newEvent i this
I newEvent i setFocus
I newEvent i showModally
I newEvent i deleteTarget

Notice that the deleteTarget action is necessary to clean the mem-
ory because the view instances are shown modally.

11 Connect the ffazs of the DBConnection variable to the cZBCo7®7iec-
££oJ® attribute of CreateviewFactory, EE. This attribute is an
IDatastore* variable that is promoted in Apropertycreateview.
With this connection, the database connection is transmitted to
Apropertycreateview.

12 Connect the fhjs of the DBConnection variable to the cZBCo7i7®ec-
£Zo7® attribute of SearchparameterviewFactory, EE]. This attribute is
an IDatastore* variable that is promoted in Apropertysearchpa-
rameterview. With this connection, the database connection is
transmitted to Apropertysearchparameterview.

13 Connect the fhzs attribute of the IInfoArea* part to the Zo7®gTe#£-
CoJ3froJ attribute of the IVBFlyText* part, EE. The long fly-over
help texts are displayed in the info area. You can add your own long
and short fly-over help texts to the controls of your choice.

Note: Reverse highlighted letters and numbers are keyed to Figure 122.

304

You can now save your part and generate its code. From the Visual

VisualAge for C++ for OS/2

ALogonview

Builder window, select ScLz/e cL7?d ge77erc!fe i Pclrf soztrce in the FZze
pull-down menu.

ALogonview
When the application starts, ALogonview enables the user to connect
to the database. As with ADeleteDialogview, this view is so simple
that we do not provide you with step-by-step instructions. In fact,
there is only one connection to draw! To complete the view:

1. Open ALogonview.

2. Connect the buttonclickEvent event of the CcI7®cez push button
to the close action of the frame window.

You can now save your part and generate its code. From the Visual
Builder window, select ScizJe ci7?d ge7tercife i Pcirf soztrce in the FZze
pull-down menu.

AReailsettingsview
OS/2 provides the programmer with a set of functions to organize,
query, read, and write pieces of data in special OS/2 files called pro-
f£Zes. Applications can use profiles to store specific information, such
as the window position or font choice. The system itself uses profiles to
store system configuration information. We distinguish between sys-
£e77? prof£Zes, which are used to hold operating system configuration
information, and ztser prof£Zes, which users use to store information
related to their applications.

The structure of a profile is simple (Figure 123). Each piece of data is
identified by a key. Collections of data are combined into groups idem-
tified by an application name. The application name must be unique
in the profile. The key must be unique within a given application. To
access data within a profile, you specify its application name and its
key.

Chapter 9. Connecting the Parts 305

Apealsettingsview

Ap lication 1

ApAp

keyl data i
key2 data 2
key3 data 3

plication 2

keyl data i
key2 data 2
key3 data 3

plication 3

keyl data i
key2 data 2
key3 data 3

306

Figure 123. Structure ofa profile

ARealsettingsview is responsible for maintaining the settings of our
application in such a profile. In this profile, you store information
about the different directories that are accessed during database
upload and download (see "ARealsettingsview" on page 206):
I Movie path
I Upload path
I Download path

The information is stored in the REA|.JIVJ profile under the applica-
tion name Z3EAL. The following keys are associated with the directo-
ries:

I MOVIEPATH, for the movie directory
I UPLOADPATH, for the upload directory
I DOWNLOADPATH, for the download directory

To maintain a profile, ARealsettings uses the services of an Iprofile
part (see Figure 124). Iprofile part, like IDate part, is a class interface
part that has no notification ability (see "Connecting a Nonvisual Part
to a Visual Part" on page 233).

VisualAge for C++ for OS/2

ABealsettingsview

Figure 124. ARealsettings Part

Because ARealsettingsview is simple, we provide you with only one
instruction table. To build this part, add the necessary subparts and
make the connections as indicated in Table 53.

Table 53. (Part 1 of 3) Building ARealsettingsview Part

Step Action

1 Open the ARealsettingsview part.

2 Add an IVBFlytext* part on the free-form surface, E.

3 Add short and long fly-over texts to the entry fields and the push
buttons.

4 Add an Iprofile* part on the free-form surface, E. Open its settings
and set up the part as follows:
Field Value
defaultApplicationName REAL
name REAL.INI

REAL.INI holds the REAL application settings.

Chapter 9. Connecting the Parts 307

ABealsettingsview

Table 53. (Part 2 of 3) Building ARealsettingsview Part

Step Action

5 Connect the buttonclickEvent event of the OK push button to theaddorReplaceElementwithKeyactionoftheIprofilepartE.Then,settheconnectionparametersasfollows:

Field Value
key MOVIEPATH
applName REAL

The data parameter is retrieved from the corresponding entry field.

6 Connect the fe#J attribute of the movie path entry field to the czcifc!attributeoftheconnectionE](seeE]).

7 Connect the buttonclickEvent event of the OK push button to the
addorReplaceElementwithKey action of the Iprofile* part E.Then,settheconnectionparametersasfollows:

Parameter Value
key UPLOADPATH
applName REAL

The data parameter is retrieved from the corresponding entry field.

8
gt°t:L%eucttet:fetfhe::oa±tnr::ti::°Ef(tsheeeuE3.L°adpathentryfieldtothedofo

9 Connect the buttonclickEvent event of the OK push button to the
addorReplaceElementwithKey action of the Iprofile* part E.Then,settheconnectionparametersasfollows:

Parameter Value
key D OWNLOADPATH
applName REAL

The data parameter is retrieved from the corresponding entry field.

10 Connect the fe#£ attribute of the download path entry field to thecZcIfclattributeoftheconnectionE(seeE).

11 Connect the buttonclickEvent event from the OK push button tothecloseactionoftheframewindow,E.

12 Connect the buttonclickEvent event from the Ccz7?cez push buttontothecloseactionoftheframewindow,E].

13 Connect the £7lfs attribute from the window info area to the ZoJ®g-
Te#£CoJ®£roz attribute of the fly-over help, E.

308 VisualAge for C++ for OS/2

ABealsettingsview

Table 53. (Part 3 of 3) Building ARealsettingsview Part

Step Action

14 Connect the ready event from the free-for.in surface to theelementwithKeyactionoftheIprofile*part,EE.Then,set the con-

nection parameters as follows:

Parameter Value
key D OWNLOADPATH
applName REAL

The data parameter is retrieved from the profile at startup.

15 Connect the clcfjoJ®Resz4Zf attribute of connection ill to the fe#£
attribute of the download path entry field, ill.

16 Connect the ready event from the free-form surface to theelementwithKeyactionoftheIprofile*part,EE.Then,set the con-

nection parameters as follows:

Parameter Value
key UPLOADPATH
applName REAL

The data parameter is retrieved from the profile at startup.

17 Connect the clc££oJ®Resz4Zf attribute of connection EE to the fe#£
attribute of the upload path entry field, EE.

18 Connect the ready event from the free-form surface to theelementwithKeyoftheIprofile*part,EE.Then,settheconnection

parameters as follows:
Parameter Value
key MOVIEPATH
applName REAL

The data parameter is retrieved from the profile at startup.

19 Connect the clc££onResz4Zf attribute of connection EE to the fe#£
attribute of the movie path entry field, EE.

Note: The order of connections E], E], E], and E is crucial! Reverse highlighted
letters and numbers are keyed to Figure 124 on page 307.

You can now save your part and generate its code. From the Visual
Builder window, select Sc!z/e cL77d ge7tercbfe i PcLrf sozt7-ce in the Fjze
pull-down menu.

Chapter 9. Connecting the Parts 309

ABealMainview

AF3ealMainview

When the application starts, ARealMainview is displayed. From this
view, the user can log on to the database, change the application set-
tings, or access one subsystem. To access one of the subsystems, the
user must establish a connection to the database. In the sections that
follow, you build the ARealMainview part in four steps:

1. Implement the logon function that enables the user to connect to
the database.

2. Build the access to the settings of the application and to the Prop-
erty subsystem.

3. Tailor the fly-over help feature, using the attribute tear-off facility.
4. Add help to the application.

Logging on to the Database

The logon push button enables the user to access the logon view. From
this view, the user can enter a user ID and a password to get con-
nected to the REAL database. ARealMainview uses the ALogonview
services to collect the logon information (Figure 125). ALogonview, in
turn, uses the IDatastore services to connect to the database. If an
exception occurs during the logon procedure (wrong user ID or pass-
word), a message box warns the user and prompts for the user ID and
password to be reentered.

E],..-.--,.,.``.Visual Really Application
I

EE
I

.

B

I

:.:.:::.:'y{+i.,,,,,,:,,,<.,.,:..:,..S:.:

`'*X;*.kkt*,i:ife

Sales ServicesPropertu Buuers

1'

I

nd E]
\Q

Figure 125. Logon to the Database

310

bRE

VisualAge for C++ for OS/2

ApealMainview

To implement the logon function, follow the step-by-step instructions
in Table 54.

Table 54. Adding Parts for the Logon Function

Step Action

1 Open the ARealMainview part.

2 Add an IVBFactory* part, E, on the free-form surface and change its
type to ALogonview*. This part creates the instance ofALogonview
to get the user ID and password.

3 Add an IVBvariablepart* part, E, to the free-form surface and
change its type to ALogonview*. This part represents the ALogon-
View instance created by the factory.

4 Add an IDatastore* part to the free-form surface, E. Open its set-
tings and fill in the dcbfcbsforeIVcbme attribute with the name of thedatabase:REAL.Thispartrepresentstheconnectiontothedata-

base. This part is transmitted to each subsystem to allow each to
access the different tables (see "Managing Database Connection" on
page 246).

5 Add an IMessageBox* part, E, to the free-form surface. This mes-
sage box displays a warning message if the connection fails
(because of incorrect authentication, for example).

Note: Reverse highlighted letters are keyed to Figure 125 on page 310.

Once you have placed the parts on the free-form surface, make the
connections as shown in Table 55.

Table 55. (Part 1 of 2) Connecting Parts for the Logon Function

Key Connection Description

I buttonclickEvent i new Create an instance ofALogon-
View to get the user authentica-
tion.

Note: The order of the next four connections is crucial!

E] I newEvent i this Associate the ALogonview vari-
I newEvent i setFocus able with the instance created by
I newEvent i showModally the factory. ALogonview is dis-
I newEvent i deleteTarget played as a modal window.

Chapter 9. Connecting the Parts 311

ABealMainview

Table 55. (Part 2 of 2) Connecting Parts for the Logon Function

Key Connection Description

E owner i this The frame window is the owner
of the instance created by the
factory (ALogonview is shown
modally).

E I EntryFielduserlDText i 'Thansmit the userid and the
userName password to IDatastore.

I EntryFieldpasswordText i
authentication

E PushButtonoKclickEvent i Connect to the database when
connect the user validates his or her user

ID and password.

E exceptionoccurred i showEx- The exception is returned by the
ception message box, and the user can

try to log on again.

B connected i close If the connection is established,
the logon window is closed.

E] close i disconnect Close the connection when the
main window is closed.

E] I isconnected i enabled Enable the different graphic
(Properties graphic push push buttons to let the user
button) access the subsystems when the

I isconnected i enabled database connection is estab-
(Buyers graphic push but- lished. Notice that the graphic
ton) push buttons are initially dis-

I isconnected i enabled abled at startup (see "AReal-
(Sales graphic push button) Mainview" on page 208).

I isconnected i enabled
(Services graphic push but-
ton)

EE isconnected i disable Disable the logon graphic push
button to prevent the user from
connecting again to the database
when the connection is estab-
1ished.

Note: Reverse highlighted numbers are keyed to Figure 125 on page 310. To
keep the drawings simple, we do not key all connections, and we do not
show ARealMainview with its multicell canvases.

312

Notice that connection EE is fired whenever the connection status of
the IDatastore* part changes. Here you do not have to use another

VisualAge for C++ for OS/2

ApealMainview

Boolean part to ensure that the value is changed to TRUE. In effect, at
startup, this value is set to FALSE. Thus, you can be sure that the
first time it changes, it is set to TRUE.

Accessing the Application Settings and the Property Subsystem

Once the database connection is established, the user can access the
Property subsystem. From the menu bar, the user can also access the
settings of the application and provide the directories required, to
upload or download the database to or from the server. In both cases,
you use a factory to dynamically create an instance of the correspond-
ing view (see Figure 126).

a

I

`,`,., *,I,I,ch+,,*+,,di

Visual Realty AppHcation

I~\/?-``•,,'

II iiii
>-.'...'r>r.'

V/*Xir/,i;rf/,:'..j,:i ;

.I .` .,,,`.,.. ` `? .,, ' `>r..

prop rtg Bugers Sales Services

I I

I

E]•/```.-`==E=>- JE B~--ffT- E
i *` / ,,.``nEE

Figure 126. Application Settings and Property Subsystem Access

To complete the ARealMainview part, follow the step-by-step instruc-
tions in Table 56.

Table 56. (Part 1 of 2) Adding Parts to Access the Application Settings and
Property Subsystem

Step Action

1 Add two IVBFactory* parts, E and E, to the free-form surface and
change their respective types to ApropertyManagementview* and
ARealsettingsview*. These parts create the instances ofAproperty-
Managementview and ARealsettingsview.

Chapter 9. Connecting the Parts 313

ApealMainview

Table 56. (Part 2 of 2) Adding Parts to Access the Application Settings and
Property Subsystem

Step Action

2 Add two IVBvariablepal t* parts, E and E, to the free-form surface
and change their respective types to ApropertyManagementview*
and ARealsettingsview*. These part represent the Aproperty-
Managementview and ARealsettingsview instances created by
each factory.

3 Add an IVBFlyText* part to the free-form surface, I. This part
enables the fly-over help to be displayed. The short help text is dis-
played as a bubble help and the long help text is displayed in the
window info area (see "Adding Fly-over Help to a Control" on page
247).

4 Add an IMenu* part, E to the free-form surface.

5 Add an IMenu* part to the first menu and change its label to ~File
(this is a shortcut to build a cascade menu). The cascade menu, E,enablestheusertoaccesstheapplicationsettingsorexittheappli-

cation.

6 Add an IMenultem* part to the first menu part and change its label
to ~Help. Open the menu item settings notebook and select help-
Command in the Co77777?c!72,d type list box. From this option, the
user accesses the application general help.

7 Add an IMenultem* part to the second menu part and change its
label to ~Settings... . Open the notebook settings of the menu item
and add ALT+S as the accelerator key: Check the ALT check box in
the Accezerc!£or group box and select the S key in the key drop-down
list. From this option, the user accesses the application settings.

8 Add an IMenuseparator* part to the second menu part.

9 Add an IMenultem* part to the second menu part and change its
label to E~xit. Open the notebook settings of the menu item and
add F3 as the accelerator key: Select the F3 key in the key drop-
down list. From this option, the user can exit the application.

10 Add short and long fly-over texts to every graphical push button
and menu item.

Note: Reverse highlighted letters are keyed to Figure 126 on page 313.

314 VisualAge for C++ for OS/2

ApealMainview

Once you have placed the parts on the free-form surface, make the
connections as shown in Table 57.

Table 57. (Part 1 of 2) Connecting Parts for Property Subsystem and
Settings Access

Key Connection Description

E] buttonclickEvent i new Create an instance of
ApropertyManagementview.

Note: The order of the connections from the factory is crucial (see ``Using an
Object Factory to Update the Database" on page 271).

E] I newEvent i this Associate the Aproperty-
I newEvent i setFocus Managementview variable part
I newEvent i showModally with the instance created by the
I newEvent i deleteTarget factory. ApropertyManagement-

View is displayed as a modal
window.

E owner i this The frame window is the owner
of the instance created by the
factory (ApropertyManagement-
View is shown modally).

E commandEvent i new Create an instance ofAReal-
Settingsview.

Note: The order of the connections from the factory is crucial (see "Using an
Object Factory to Update the Database" on page 271).

E I newEvent i this Associate the ARealsettings-
I newEvent i setFocus View variable part with the
I newEvent i showModally instance created by the factory.
I newEvent i deleteTarget ARealsettingsview is displayed

as a modal window.

E owner i this The frame window is the owner
of the instance created by the
factory (ARealsettingsview is
shown modally).

B this i longTextcontrol Display the long fly-over help in
the window info area.

E commandEvent i close Close the window when this
option is selected.

E] menu i this The menu is associated with the
main window.

Chapter 9. Connecting the Parts 315

ApealMainview

Table 57. (Part 2 of 2) Connecting Parts for Property Subsystem and
Settings Access

Key Connection Description

EE menu i this The submenu is associated with
the first menu item. This con-
nection is built automatically
when you drop a menu part on
another menu part.

Note: Reverse highlighted numbers are keyed to Figure 126 on page 313. To
keep the drawings simple, we do not key all connections, and we do not
show ARealMainview with its multicell canvases.

To transmit the database connection to ApropertyManagementview,
you must connect the fhzs attribute of the IDatastore part, DBConnec-
tion, to the cZBCoJaJiec££o7® promoted variable of Aproperty-
Managementview (this connection is not shown on Figure 126 to avoid
overloading the figure.)

Tearing Off an Attribute

Fly-over help is a great feature for a novice user, but it can become a
nightmare when the user gains experience. It is actually rather irri-
tating to have a bubble help display each time you position the mouse
pointer on a control with which you are already familiar. To tailor the
fly-over help behavior, you can set up the delay between the time the
pointer has stopped on a control and the time the bubble help is dis-
played. To do so, access the event handler of the fly-over help part and
set its czezay7t77ie attribute to the value of your choice (the value is
given in milliseconds).

It is not possible to access directly the czezey7t777e attribute from an
IVBFlyText* part. Rather, you can fecbr o# its #yozjerHeJPHcb7?dzer
attribute and from it access the czezay7t77ie attribute. The torn-off
attribute is not a separate part, but a variable that represents the
attribute itself (Figure 127). Tearing off an attribute is like peeling an
onion: From a part, you can tear off one of its attributes; then from
that attribute, you can tear off another attribute, and so on.

316 VisualAge for C++ for OS/2

AF}ealMainview

A±

Figure 127. Tearing off an Attribute

To tailor the fly-over help behavior of ARealMainview, follow these
step-by-step instructions :

1. Select the viewText* part on the free-form surface, E.
2. Select the Feclr-OffA#rfbz4£e option from its pop-up menu. A list

of the IVBFlyText* part's attributes is displayed.
3. Select #yotJerHeJplrcI7®czzer from the list. The torn-off attribute,

E, is created on the free-form surface as a variable that points to
the flyoverHelpHandler attribute of the IVBFlyText* part.

4. Connect the ready event from the free-form surface to the delay-
Time action of the torn-off attribute, E].

5. Double-click on the connection and click on the Set pclrclmefers...
push button to set the delay time.

6. Type in the delay time in milliseconds. One thousand milliseconds
is a good value.

Chapter 9. Connecting the Parts 317

ApealMainview

Tearing off an attribute is quite different from promoting an
attribute. When you tear off an attribute, you create a refer-
ence that points to the attribute and an attribute-to-
attribute connection that associates the attribute with the
reference. Because most of the time the attribute is a part
itself (as opposed to a primitive type such as integer or real),
you can access its attributes and methods. When you pro-
mote an attribute, you generate an extra member function,
which enables a composite part to access its promoted
attribute. When you use the tear-off facility, you must not
forget that each torn-off attribute involves creation of an
attribute-to-attribute connection and its associated class.
This requirement can introduce overhead in your application
if the torn-off attribute is not justified.

Adding Help to Your Application

You can provide your application with two basic help types:

General help Provides general information for a specific
window, explaining its purpose and how it
operates.

Context-sensitive help Provides help information for the current
choice, object, or group of choices or
objects. The user can display the context-
sensitive help by tabbing or moving the
cursor to an object and either:

• Pressing the Fl key (this is automati-
cally handled by PM

Or

• Selecting the HeJp push button or
menu option if you have provided one

In our application we used both types of help.

Before connecting any help files to the application, you must first cre-
ate them. For convenience we have provided two help sources:
I MAIN.IPF, the general help
I SETTINGS.IPF, the application settings help

Use the IPF compiler (the IPF compiler comes with the OS/2 2.1 tool-
kit and the OS/2 Warp toolkit) to generate a binary help file (these
files have an HLP extension) for each source file by issuing the 1. pfc
I PF f l.1 e command.

318 VisualAge for C++ for OS/2

ApealMainview

Then, place your HLP files in the D: \VR\HELP directory to make them
accessible to your application. Do not forget to add the D:\VR\HELP
directory in the HELP variable of your CONFIG.SYS system file.

To connect the help to the application, add an IHelpwindow* part on
the free-form surface and set its Hezp Zjbrc!7-Zes attribute to the associ-
ated help file name (this attribute is accessible from the settings note-
book of the IHelpwindow* part).

To provide general help to your application, open the settings notebook
of your main window and, on the Control page, enter the resource
number for the general information help panel in the HeJp pcI77ez Zd
entry field.

To provide a context-sensitive help to a subpart, open the subpart set-
tings notebook and, on the Control page, enter the resource number
for the specific information help panel in the Hezp pcL7?ez Zd entry field.

You can associate a different help file for each application subsystem
in two ways:

I You can add an IHelpwindow* part to the free-form surface where
the main window subsystem is located and set the HeJp Zjbrc!rzes
attribute to the corresponding help file. In this way you, statically
associate the help window with the main window subsystem. Use
this solution when you have created multiple help library files for
your application. You will use this method to connect the
MAIN.HLP file to our main window (see the GeneralHelp part in
Figure 128).

I You can dynamically associate a help window with a window that
is generated by an object factory. In this case, you add an IHelp-
Window* part to the free-form surface of the view that holds the
factory and set the Hezp Zzbrc!rzes attribute to the help file of the
child window. Then, connect the newEvent event from the object
factory to the setAssociatedwindow action of the help window.
You will use this method to connect the SETTINGS.HLP help file to
ARealsettings (see the SettingsHelp part in Figure 128). This
solution can be used when you have one help library file for all of
the panels of one subapplication. This solution enables you to
gather all of the IHelpwindow* parts in the same view, thus facili-
tating the maintenance of several help library files.

If you have several IHelpwindow* parts in one view, you must explic-
itly use the setAssociatedwindow action to associate a window with
its corresponding help library file.

Chapter 9. Connecting the Parts 319

ApealMainview

:..¥.. i B-I 15 S:::i:i,

`\

_ _-_-_.. _ -._-_ _-_ --` . _._-- - -_:-` -. ...`. `---` _...` -.---;----._.-. -.-.-. --\`.`-.-...-.` -`..-. .-----`.`. .--`.--`-'-' '-.--` ',.---', `-`-' ` `.`.'-' ' ',`, ' ' `.'.`.' ' '

Visual Realty AppHcation
Iiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

•`

I

!p

`..',`..',,|j///++,/, /.i.*j, ,.Ni,,/.i,*/. /.rix,/.X.,//.i,.,//.iJ..

ertg Bugers Sales Services

I|t
-::;# a ` ''`'' '` '`''''''''.i,;;`'''`--``' `` ``.`` I .I .I .''. `=:;:..

f' ife7' \,=]Oul A [L;±]
VBFlyText f|yoverHe|pHan&ler ofvBFlyText

PropertyMn&Eact`ory

E '`-`fi] Efu
GenerELIHelp PropertyMng SettingsHelp

[F]
SettingsMng

Figure 128. Adding Help to the Application

To add a help facility to the application, follow the instructions in
Table 58.

Table 58. (Part 1 of 2) Adding Help to the Application

Step Action

1 Add two IHelpwindow* parts, E and E], to the free-form surface. (The
IHelpwindow* part is located in the Ofher category.)

2 Open the settings window of each IHelpwindow* part and fill in the
Hezp Zjbrcirzes entry fields as follows:

Part Help libraries
GeneralHelp REAL. HLP
SettingsHelp SETTINGS.HLP

The corresponding help files are associated with their correspond-
ing IHelpwindow* part.

3 Connect the newEvent event ofARealsettings factory to the set-
Associatedwindow action of SettingsHelp,E.

4 Connect the ready event of ARealMainview to the setAssociated-
Window action of GeneralHelp, E.

320 VisualAge for C++ for OS/2

ApealMainview

Table 58. (Part 2 of 2) Adding Help to the Application

Step Action

5 Connect the fhfs attribute of the IFramewindow* to the
associatedwindow parameter of connection E], (see E).

You must now add the resource numbers to the settings of ARealMain-
View (Table 59) and ARealsettingsview (Table 60) to access the spe-
cific help information.

Table 59. Adding Help Resource Numbers for ARealMainview

Step Action

1 Open the settings notebook of the IFramewindow* part.

2 Switch to the Control page and enter 100 in the HeJp pcL77ez jcz entry
field.

3 Open the notebook settings of the graphical push button and, on the
Control page, set the Hezp po77ez jd as follows:

Button Help panel id
Logon 110
Properties 120
Buyers 130
Sales 140
Services 150

4 Open the notebook settings of the menu items and, on the Control
page, set the Hezp pcL77ez jd as follows:

Menu item Help panel id

File 160
Help 170
Settings 180
Exit 190

5 Save the part and regenerate its source code.

Table 60. Adding Help Resource Numbers for ARealsettingsview

Step Action

1 Open the ARealsettingsview part.

2 Open the settings notebook of the IFramewindow* part.

Chapter 9. Connecting the Parts 321

ABealMainview

Table 60. Adding Help Resource Numbers for ARealsettingsview

Step Action

3 Switch to the Control page and enter 200 in the Hezp pc}77ez jd entry
field.

4 Open the notebook settings of each entry field and, on the Control
page, set the Hezp pci77ez jcz as follows:

Entry field Help panel id
EntryFieldMovie 210
EntryFieldupLoad 220
EntryFieldDownLoad 230

5 Save the part and regenerate its source code.

When you generate the code for your application, Visual
Builder creates a help table in the resource file (.rc) that it
generates. It inserts in the help table the resource number
that you specify on the Control page of each subpart. From
the resource file, you can translate your help file without
recompiling the entire application.

322

Congratulations! You have built your first subsystem. Now we suggest
that you compile your code and run it in the WorkFrame/2 environ-
ment. You are now ready to take the plunge and explore other sub-
systems to discover new tricks for your future applications. In the next
chapter, we go a step further and reveal the magic of Visual Builder:
the notification framework.

VisualAge for C++ for OS/2

Vvant to
More aleout

Visual Builclei -...
This chapter takes you behind the scenes of visual Builder. After read-
ing this chapter, you will be able to understand how drawing a connec-
tion between two parts makes them cooperate and how the code is
generated. You must understand those concepts if you want to import
your existing C++ code as parts in Visual Builder or build your own
parts.

Notil:ication Framework Concepts

The world of visual Builder is ruled by notifiers and observers. A 77o£Z-
fzer enables other objects to register themselves as dependent on any
change in the properties of the notifier. In other words, an object can
teHl a TIofif]er.. I haue a value that depends on one of your cttri,bates.
Could, you notify me when the attri,bute value changes?

323

How Visual Builder Uses the Notification Framework

Each notifier maintains a list of objects that are interested in a certain
event. To register itself to a notifier, an object adds an obserzjer to that
list. Notifiers are responsible for publishing their supported notifica-
tion events, managing the list of observers, and notifying observers
when an event occurs.

Notifier objects indicate the notification events that they support by
providing a series of unique identifiers in their interface. In Visual
Builder, a notification ID is a unique string built from the class name
and the attribute or event name, for example, IPushButton::text.

Whenever an event occurs, the notifier object sends out its notifica-
tions to all of its dependent observers. The observer can choose to
either handle or ignore a notification by checking the event notifica-
tion ID.

Observers and notifiers are defined in the IBM Open Class Library
notification framework, respectively, as the Jobserz/er and JIVo£Z/Zer
abstract classes.

How Visual Builder Uses the Notification Framework

Let us take a simple example. With the Composition Editor, create two
visual parts: a static text and an entry field. Then, draw an attribute-
to-attribute connection between the fe#£ attribute of the static text and
the fe#£ attribute of the entry field so that both values always remain
the same (Figure 129).

Figure 129. Sample Window: Using an Attribute-to-Attribute Connection

Visual Builder generates two default names for the parts you created:
StaticTextl and EntryFieldl. Visual parts, such as IEntryField, gener-
ally inherit from the Iwindow class, whereas nonvisual parts derive
from the IstandardNotifier class. Both Iwindow and Istandard-
Notifier provide a concrete implementation of the notifier protocol.

324 VisualAge for C++ for OS/2

How Visual Builder Uses the Notification Framework

In Visual Builder all parts are notifiers. From there, you can deduce
that drawing a connection between two parts is equivalent to creating
an observer for the soz/rce of the connection. The connection is then
responsible for updating its fcL7-gef part whenever the source under-
goes any state change.

Technical Information!

cas
The way in which you draw a connection between
two parts is not innocent: The direction of the
arrow determines which is the source and which
is the target. The only exception to this rule is
the attribute-to-attribute connection, where the
connected parts play both the source and target
roles (two-way arrow). However, the way in
which you draw an attribute-to-attribute connec-
tion determines which attribute value will be
used at initialization.

Scenario for a Connection

Let us define who the actors are in our scenario. We have two visual
parts, IEntryField and IstaticText, and the connection. To simplify the
scenario, we deliberately omit the IFramewindow and Icanvas parts,
which are also used in our example.

Connection class Definition

For the connection, Visual Builder generates a child class of the Iob-
server class as follows:

class samplevi.ewconno : publi.c I0bserver {

p u b 1 1. c :
virtual ~samplevi.ewconno(){};

//------------------------
// publi.c member functl.ons
//------------------------
voi.d i.ni.ti.all.ze(IEntryFi.eld * asource, Istati.cText * aTarget)

{source = asource; target = aTarget;};
®,

protected : . . .

pri vate :
//------------------------
// pri.vate member data
//------------------------
IEntryFi.eld * source;
Istati.cText * target;

in

Chapter 10. If You Want to Know More about Visual Builder... 325

How Visual Builder Uses the Notification Framework

Parts and Connection lnitialization

The instances of our main actors are created:

i.EntryFi.eldl = new IEntryFi.eld(. . .) ;

i.StaticTextl = new Istati.cText(. . .) ;
conno = new sampleviewconno();

Notifiers are created disabled and must be enabled before they can
notify any event. Therefore, Visual Builder parts can initialize them-
selves before the support for notification is effectively enabled. Notifi-
cation enabling is provided by the e7tcLbzeIVofjffcc!£jo77 method defined
in the INotifier abstract class. For our example, the entry field and
static text objects are enabled as follows:

iEntryFi.eldl->enableNotifi.cati.on()
i.Stati.cTextl->enableNoti.ficati.on();

The next step is to initialize the connection with its source and target
attributes and register the connection as an observer for the source
part and the target part. Note that bidirectional initialization is par-
ticular to attribute-to-attribute connections; for any other connection,
such as an event-to-action connection, the connection is registered
only to the source part. Registration is performed through the handle-
NotificationFor() method defined in the Iobserver class:

conn0->ini.ti.all.ze(i.EntryFie1d1,i.Stati.cText1)
conno->handleNotificati.onsFor(*i.EntryFi.eldl);
conno->handleNoti.fi.cati.onsFor(*istaticTextl);

The connection is now ready to handle any event data that a notifier
sends. Figure 130 summarizes the initialization process.

326 VisualAge for C++ for OS/2

How Visual Builder Uses the Notification Framework

EI
han-dl-eN-ot-ifi6aflo-nFor

connection

Figure 130. Visual Builder Parts Initialization Process

Notification Flow

Let us now update the text in the entry field and try to understand the
sequence of events in the system. The text attribute has a unique noti-
fication ID, namely, EnfryFzezcz £ex£JD. The IEntryField class defines
a setText() method, which is called each time the value of the text
attribute must be updated. It is the responsibility of the setText()
method to use the 7to£Z/yobse7.I;ersrJ method to indicate that the text
attribute has changed. The setText() method could be implemented as
follows:

IEntryField& IEntryFi.eld: :setText(const Istri.ng& aText)
(

i.f (! (I.Text == aText))

(
I.Text = aText;
noti. fyobservers (INoti. fi catl. on Event (I EntryFi. el d : : text Id , *thi. s)) ;

) // endl'f
return *thi.s;

)

Whenever the notifyobservers() method is called, each observer
applies the dispatchNotificationEvent() method to its list of observers.
It is the responsibility of each observer to override the dispatchNotifi-
cationEvent() method according to its own needs. Usually, the first
step is to check whether the corresponding event should be handled or
ignored and then perform the necessary updates.

Chapter 10. If You Want to Know More about Visual Builder... 327

How Visual Builder Uses the Notification Framework

In our example, the sampleviewconno class redefines the dispatchNo-
tificationEvent() method as follows:

protected :
//--------------------------------
// protected member functions
//--------------------------------
I0bserver&
di.spatchNoti.fi.cati.onEvent(const INoti.fi.cati.onEvent& anEvent)

(

/* Initialization of target part */
if (anEvent.noti.ficati.onld() == VBINITIALIZEID) setTarget();
if ((anEvent.noti.ficati.onld() == IEntryFi.eld::textld)

&& (source == &anEvent.noti.fi.er()))
setTarget(); /* set target to source value */

else
I.f ((anEvent.noti.fi.cati.onld() == IstaticText::textld)

&& (target == &anEvent.notifier()))
setsource(); /* set source to target value */

return(*thi.s);
in

Because the conno instance is registered to the IEntryField observers
list, the connection is said to be fired, and the setTarget() function is
called, updating the value of the staticText text attribute.

Figure 131 summarizes the notification flow.

Figure 131. Visual Builder Notification Flow

328 VisualAge for C++ for OS/2

How Visual Builder Uses the Notification Framework

Using Connections as Notifiers

Let us now modify our example: We want to bring up a message box
whenever the connection cannot be fired and display the exception. We
add an IMessageBox* part (see the Exceptions part in Figure 132) to
our example, and we draw an event-to-action connection (connectionl)
between the exceptionoccurred event of the first connection
(connectiono) to the showException action of the Exceptions part.

Figure 132. Sample2 Window: Using a Message Box for Exception Handling

The code generated for the connectiono definition is now different. The
attribute-to-attribute connectiono plays two roles: the role of observer
to perform the text attributes update and the role of notifier to send
the exceptionoccurred event to connectionl. The class definition gen-
erated for connectiono is now:

class sample2vi.ewconno : publi.c I0bserver, publi.c IstandardNoti.fi.er {

p u b 1 1` c :
vi.rtual ~sample2viewconno(){};

//-----------------------------
// public member functi.ons
//-----------------------------
void i.ni.ti.all.ze(IEntryFi.eld * asource, Istati.cText * aTarget)
(

source = asource;
target = aTarget;
enabl eNot i f i cat i on () ;

in
protected :

pr1'Vate:
//------------------------

Chapter .10. If You Want to Know More about Visual Builder... 329

From Classes to Nonvisual Parts in Visual Builder

// pri.vate member data
//------------------------
IEntryFi.eld * source;
Istati.cText * target;

in

The main difference between this sample and the previous sample in
"Parts and Connection Initialization" on page 326 is that connectionl
has to register itself as an observer to a connection instead of a visual
or nonvisual part. In addition, connectiono must enable itself for noti-
fication in the initialize function call. The parts and connections ini-
tialization is declared as follows in the generated code:

conno->i.ni.ti.all.ze(i.EntryFieldl,i.Stati.cTextl)
conno->handl eNoti. fi cati. ons For (*i EntryFi el d 1) ;
conno->handl eNoti. fi cati ons For (*i stat i cText 1) ;
connl->initialize(conno, iExcepti.ons);
conn 1->handl eNoti fi cati onsFor (*conno) ;

As a notifier, connectionl must call the notifyobservers() function if
an exception occurs while updating the target text attribute. This noti-
fication is sent in the setTarget() function and defined as follows:

setTarget ()
(

try {target->setText(source->text()) ;}
catch (IException& exc) {
not i fyobservers (I Noti f i cat i. on Event (except i. on I d ,

* t h 1' s ,

true,
I EventData ((voi. d *) &exc))) ;

in
)

With all of the above in mind, you are ready to take your existing C++
classes and transform them into parts. The next section provides you
with some guidelines to achieve that goal.

From classes to Nonvisual Parts in Visual Builder
In this section, we convert a generic flat file class to a fully enabled
nonvisual part that can be used in Visual Builder. (See Appendix E on
page 357 for the source code for the flat file class.) We provide step-by-
step instructions for performing this task. We focus on nonvisual
parts, but the method of creating your own visual parts is exactly the
same, provided that you use the Iwindow class as a parent for your
visual part. Another solution would be to create a child class from any
visual part, such as IFramewindow, and modify it to suit your require-
ments.

330 VisualAge for C++ for OS/2

From classes to Nonvisual Parts in Visual Builder

To achieve the transition from a C++ class to a nonvisual part, you
must enable your C++ class as a notifier and declare the part interface
used in Visual Builder. First, modify the class definition so that your
class inherits from IstandardNotifier. Then, create a unique notifica-
tion ID for all events that your part might send. Finally, modify the
code to call the notifyobservers() function each time an attribute is
modified (if you want the change to be public, of course). You can
describe the part interface by either writing a part information file or
using the Part Interface Editor in Visual Builder.

Technical Information!

es If you want to use a part as the soz47-ce for a con-
nection, it must be able to send notifications to
other parts. Thus, you must complete all modifi-
cations as described in this section. However, if
you only want to use a part as the forgef of a
connection, only the creation of the part inter-
face is mandatory, and the part does not have to
be enabled as a notifier. Such a part is called a
cZc!ss j7}£erfc!ce part. An example of a class inter-
face part is provided in Chapter 8, "Creating
Nonvisual Parts," on page 213.

The flatFile class has the following interface:
I Member data

> fileName (Istring)
> currentLine (Istring)
> fileHandler (fstream)
> Filelsopened (Boolean)
> eofReached (Boolean)

I Member functions
> getFileName (get accessor method for the fileName attribute)
> setFileName (set accessor method for the fileName attribute)
> getcurrentLine (get accessor method for the currentLine

attribute)
> setcurrentLine (set accessor method for the currentLine

attribute)
> readLine
> readFile
> writeLine
> Open
> close

Chapter 10. If You Want to Know More about Visual Builder... 331

From Classes to Nonvisual Parts in Visual Builder

Before you actually transform a class into a part, ask yourself the fol-
lowing questions:

1. Which member functions should I include in the part interface?

2. Which attributes should I include in the interface, and do I have to
send an event whenever the attributes undergo a state change?

3. Do I have to create additional events that would be useful when
using this part in Visual Builder?

'lypically, the fileHandler, filelsopened, and eofReached data mem-
bers are internal to the behavior of the class and should not be used
from Visual Builder. Rather, you want to signal when the filelsopened
and eofReached Booleans are TRUE. Therefore, you add the
filelsopened and eofReached events to the part interface.

The only attributes that you have to modify or retrieve through their
get and set member functions are fileName and currentLine.

Finally, you. must convert the open, close, readFile, readLine, and
writeLine member functions as actions.

With all of the above in mind, you can begin to write the part inter-
face.

Describing the Part Interface

You can describe a part interface in two ways. The technique you use
depends on how much code you have and how complex it is:

I Using the class browser, import the methods definitions of your
C++ class into the Visual Builder Part Interface Editor and then
create a VBB file.

I Write a part information file (a VBE file) and import it in Visual
Builder to produce a VBB file.

using the Part Interface Editor

The first step is to generate browser database files for your existing
code. The usual method is to compile the code with the Alb option. You
might also use the browser QuickBrowse facility directly from Visual
Builder. This facility is available from the Part Interface Editor o7tzy if
you started Visual Builder from a WorkFrame/2 project in which the
BrsMon action is defined.

332 VisualAge for C++ for OS/2

From classes to Nonvisual Parts in Visual Builder

To create the nonvisual part interface, start Visual Builder and select
Pc}rfiIvezu. Figure 133 shows the information to enter for the flatFile
part.

Figure 133. Part-New Window: Creating a FlatFile Nonvisual Part

In our example, the flatFile class definition is stored in the flatfile.hpp
file and the implementation is in the flatfile.cpp file. You must specify
this information in the Cocze Ge7tercL£Zo7? FZzes group box of the Class
Editor. You also must specify user-defined file names, such as flat-
file.hpv and flatfile.cpv.

To import the methods definition, switch to the Part Interface Editor
and select Brozuseriope7t Broz#ser DcbfcL... from the FZze menu item.
The Part Interface Editor looks for a flatfile.pdb file in the working
directory (it actually builds this name from the nonvisual part name
and the .pdb extension) and provides you with a list of available func-
tions. Thus, you can avoid the long, boring task of manually entering
the definition of the functions by using the Part Interface Editor (and
probably introducing a few errors).

Tip!

Browser data analysis is case-sensitive. In other words, if
you call your part #cb£FZze and your class name is FZc!£Fjze,
Visual Builder will not be able to import the methods defi-
nition. To avoid any naming problems, a good rule is to give
the same name to your class, the corresponding nonvisual
part, and the files where you store your class definition.

You can now create your attributes, actions, and events in the same
way as explained in Chapter8, "Creating Nonvisual Parts," on
page 213. For example, the fileName attribute is defined as described
in Figure 134. The easiest way to create the attribute definition is to

Chapter 10. If You Want to Know More about Visual Builder... 333

From Classes to Nonvisual Parts in Visual Builder

#eTraih:efsa:fel¥tsetio:rt:to::ela:::::aijLm::t:ioc:t:f:tcsa:1yopnelEbcll:c:eonnertahtee#o:

Figure 134. Part Interface Editor Window: Creating an Attribute Definition

Once you have described all of your part features, the next step is to
generate the code that you have to add to your legacy code. You
already have the methods definition as well as the attributes defini-
tion, so all you need is the events declaration and definition. Visual
Builder appends this code to the user-defined generation files you
defined in the Class Editor, namely, flat file.hpv and flatfile.cpv.

Attention!

Be careful when saving. When you choose ScLz;e from any
Visual Builder editor, you create a flatfile.vbb file. This is
safe and highly recommended! But, if you choose ScLz;e
then Ge72,erc!feipc!r£ Soztrce, you are actually creating the
part, that is, you are erczsj7ig the flat file.cpp and flat-
file.hpp files.

To generate the code corresponding to events, select Sc!LJe o7?d Ge77er-
cIfeiFecifz/re soz/rce... from the FZze menu item and select only the
items from the events data members list. Then click on the Generate
selected push button to generate the source code of the selected
items. If the flat file.cpv and flat file.hpv files do not exist, they are
automatically created. If the files exist, Visual Builder appends the
generated code to them. The events definition and declaration are as
follows:

334 VisualAge for C++ for OS/2

From Classes to Nonvisual Parts in Visual Builder

// Definition in the flat file.cpv file

INoti.fi.cati.onld FlatFile::fi.lelsopenedld = `'FlatFi.le::fi.lelsopened'';
INoti.fi.cati.onld FlatFile::eofReachedld = "FlatFi.le::eofReached";
INoti. fi. cati. onld Fl atFi.1 e: : fi 1 eNameld = " Fl atFi.1 e: : fi.1 eName" ;
INoti.fi.cati.onld FlatFi.le::currentLineld = "FlatFile::currentLine'';

// Definition in the flat file.hpv file

stati.c INotifi.cati.onld filelsopenedld;
stati.c INotifi.cationld eofReachedld;
static INotifi.cationld fi.leNameld;
stati.c INotifi.cationld currentLineld;

Writing a Part Information File

A part information file (or VBE file) is a flat file that describes a part
interface. It contains the definition of the part itself, as well as its
actions, attributes, and events. Visual Builder can import a VBE file
to create the corresponding VBB file. For details on the syntax of the
statements you use to write such a file, see Bz4jzdz77g VIsztcIIAge C++
Parts for Fun and Profit.

Here is an extract of the export file that you must create to import the
flatFile part in Visual Builder.

//VBBegi.npartlnfo: FlatFi.1e,I.A Flat File Management Class"
//VBparent: IstandardNoti.fi.er
//VBIncludes: "FlatFile.hpp" _FLATFILE
//VBpartDataFile: FlatFile.vbb
//VBComposerlnfo: nonvi.sual
//VBEvent: fi.1eName, ''fi.leName'',fi.leNameld
//VBAttri.bute: fi.leName,
//VB: ''The fi.le Name'[,

//VB: Istrl'ng,
//VB: Istri.ng fi.leName() const,
//VB: FlatFi.le& setFi.leName(const Istri.ng& aFi.leName) ,
//VB: fi.leNameld
//VBAction: close
//VB: "Close the flat fi.le''„
//VB: FlatFile& close()

®,

//VBEndpartlnfo: FlatFi.le

This method is quite efficient in terms of time and simplicity if you
have a class with few methods and few attributes. You can also use
REXX, for example, to write templates for part information files and
develop a script that would generate the export file for you from the
class information.

Chapter 10. If You Want to Know More about Visual Builder... 335

From Classes to Nonvisual Parts in Visual Builder

Modifying Your Code

To use your part as a soz/roe for a connection, you must modify it to
become a notifier. Modify its definition as follows:

class FlatFi.le: public IstandardNoti.fier {

publ i c: . . .
in

Because your part uses the IBM Open Class Library notification
framework, you must include the corresponding definition files as well
as the files generated from the Part Interface Editor. Include the fol-
lowing files in the flat file.cpp file:

I inotifev.hpp
I iobservr.hpp
I istdntfy.hpp
I ivbdefs.h
I flat file.hpp
I flat file.cpv

The flatfile.hpp file must include the flatfile.hpv file within the private
(or protected) section of the class definition:

class FlatFi.le: publi.c IstandardNotifi.er {

p u b 1 1. c :
®®,

protected :
®®,

pr1'vate:
#i.nclude "FlatFi.le.hpv"

); //FlatFl'le

Now your part must send a list of events to the "external world."
Therefore, you must call the notifyobservers() method each time an
attribute of your part is modified or whenever you want to signal a
particular event. For example, whenever the fileName attribute of
your FlatFile class changes, you call the notifyobservers() method by
modifying the setFileName() method as follows:

336 VisualAge for C++ for OS/2

When Parts Become Observers...

FlatFi.le& FlatFi.le::setFileName(const Istri.ng& aFi.leName)

(

if (fi.leName != aFi.leName) {

fi.1eName = aFi.leName;

noti. fyobservers (I Noti fi cati onEvent (Fl atFi. l e : : fi. l eNameld , *thi. s)) ;

)

return *this;
)

Attention!

To avoid unnecessary overhead, we highly recommend test-
ing the new value to be assigned to an attribute before call-
ing the notifyobservers() function.

Congratulations! Your class is now a part and you can fully exploit its
power from Visual Builder.

Whem Parts Become Observers...
Let us take a simple example of a part becoming an observer. With the
Composition Editor, create a defaultButtons visual part from an Ican-
vas* part and three IPushButton* subparts as depicted in Figure 135.

Figure 135. The defaultButtons Composite Visual Part

The defaultButtons visual part can be reused in other visual parts to
provide a standard look and feel in your applications. For this pur-
pose, you must be able to access the defaultButtons subparts' features
from any of the parts where you reuse the defaultButtons part. You
know by now that this is not possible unless you promote the features
of the subparts, that is, the features of the three push buttons. Let us
promote the buttonclickEvent event feature of each push button and
examine the generated code.

The first thing you notice when you look at the code is that the
defaultButtons part inherits from both the Icanvas and Iobserver
classes:

Chapter 10. If You Want to Know More about Visual Builder... 337

When Parts Become Observers...

338

class defaultButtons : publi.c Icanvas, publi.c I0bserver {

p u b 1 1` c :

®

in

In fact, the defaultButtons part must be able to observe the subparts
whose features are promoted and catch the notification events corre-
sponding to the promoted features. To publish those events, Visual
Builder generates the defaultButtons source code so that one notifica-
tion event ID is created for each promoted feature, and each promoted
feature is added to the defaultButtons public interface:

// Declaration in the defaultb.hpp fi.le

stati.c const INoti.fi.cati.onld pB0kButtonclickEvent;
statl.c const INoti.fi.cati.onld pBcancelButtoncli.ckEvent;
statl.c const INoti.ficati.onld pBHelpButtoncli.ckEvent;

// Definition in the defaultb.cpp fi.le

const INoti.fi.cati.onld defaultButtons::pB0kButtonclickEvent =
"defaul tButtons : : pB0kButtoncl i. ckEvent" ;

const INoti.fi.cationld defaultButtons::pBcancelButtoncli.ckEvent =
'`defaul tButtons : : pBcancel Buttoncl I. ckEvent " ;

const INoti.fi.cationld defaultButtons::pBHelpButtoncli.ckEvent =
''defaul tButtons : : pBHel pButtoncl i. ckEvent" ;

To observe its subparts, the defaultButtons part must register itself to
the list of observers of each subpart that has a promoted feature. For
this purpose, Visual Builder generates a call to the handleNotifica-
tionFor() method in the initializepart() method of the defaultButtons
part for each subpart that has a promoted feature:

defaul tButtons & defaul tButtons : : i ni. ti. al i. zepart ()
(

this->handleNoti.fi.cati.onsFor(*i.PB0k);
thi.s->handleNoti.fi.cati.onsFor(*i.PBcancel);
thi.s->hand1eNotificati.onsFor(*i.P8He1p);
makeconnecti. ons () ;
notifyobservers(INotifi.cationEvent(readyld, *thi.s)) ;
return *thi.s;

)

Visual Builder also generates one member function for each subpart
that has at least one promoted feature. This member's feature returns
the subpart itself and is used when the defaultButton is reused in
another part to access the subpart features:

IPushButton * getpB0k() const { return ipB0k };
IPushButton * getpBcancel() const { return i.PBcancel; };
IPushButton * getpBHelp() const { return i.PBHelp; };

VisualAge for C++ for OS/2

When Parts Become Observers...

As an observer, the defaultButtons part must override the dispatchNo-
tificationEvent() virtual method. Basically, the defaultButtonspart
maps the notification event published by its subparts to the new noti-
fication events created for each promoted feature. As an example, the
following piece of code captures the buttonclickld from the OK push
button and publishes it under its new name:

I0bserver&
defaultButtons::di.spatchNoti.ficati.onEvent(const INoti.ficati.onEvent & anE
vent)

if ((anEvent.noti.fi.cationld() == IPushButton::buttonclickld)
&&

(ipB0k == &anEvent.noti.fier()))
noti.fyobservers(INoti.fi.cati.onEvent(pB0kButtoncli.ckEvent,

* t h 1' s ,

an Event . hasNot i fi. erAttrchanged () ,
IEventData((voi.d *)anEvent.eventData())

an Event . observerData ())) ;
else

®®,

)

Congratulations! You are now experts on the IBM notification frame-
work and its application in Visual Builder.

Chapter 10. If You Want to Know More about Visual Builder... 339

When Parts Become Observers...

340 VisualAge for C++ for OS/2

Before installing the application make sure that the follow-
ing products are installed on your machine:

I DATABASE 2TM OS/2 version 1.2 or higher (If you use
D82 Version 2, you must also install the DATABASE
2TM Software Developer's Kits Version 2.)

I OS/2 2.11 or OS/2 Warp® 3.0

I Multimedia Presentation Manager/2TM
a Visua]AgeTM for C++ V3.0 for OS/2 (all components)

I Corrective Service Diskettes (CSD) CTV303 and
CTW301 (see VisualAge for C++ Support on page xxviii)

AIl of the files that you need to run the sample application are stored
in the CD-ROM that accompanies this book. If you do not have the
required products, the CD-ROM provides you with a trial version of
D82TM Version 2 (D82 Software Developer's Kit included) and Visual-
Age for C++ for OS/2.

341

To make it easy for you to install the Visual Realty application, we
have included an installation program on the CD-ROM itself. This
program copies all the files you need to the correct locations on your
hard disk and creates the WorkFrame/2TM projects.

Follow these steps to install the Visual Realty application:

1. Insert the CD-ROM into your CD-ROM drive.

2. Open the CD-ROM drive from the drive folder.
3. Double-click on the install.exe program to start the installation.
4. Follow the on-screen directions in the install program.

Consult the READ.ME file located on your CD-ROM for the latest
information regarding the sample application and the installation pro-
cedure.

342 VisualAge for C++ for OS/2

otation
In this appendix we show the schema representation of the object
model (see Figure 136) and the state diagram (see Figure 137) for the
Object Modeling Technique method.

343

Generalization:

Association

with

Cardinality:

Aggregation:

no 1-to-Oorl (optional)

e 1-to-n
em „e in-to-n

Source. Object-Oriented Modeling and Deslgn -James Bumbaugh et al

Figure 136. OMT Notation: Object Model

344 VisualAge for C++ for OS/2

start

eE Initial

State

Arc label of the form:

Event(attribute) [Condition] / Action

Source: Obiect-Oriented Modeling and Deslgn -James Bumbaugh et al

Figure 137. OMT Notation: State Diagram

Appendi>t 8. OMT Notation 345

346 VisualAge for C++ for OS/2

ase
lion

This appendix lists the data definition language that defines the lay-
out of the relational tables used in the Visual Realty application.

BUYER ADDRESS TABLE

CREATE TABLE USERID.BUYER ADDRESS

(ADDRESS ID CHAR(T1) NOT NULL,

STREET 5HAR(40) ,

AREA CHAR(40) NOT NULL,

CITY CHAR(40),

STATE CHAR(2),

ZIP CODE CHAR(5) FOR BIT DATA,

pRlriARy KEy t ADDREss ID]]

BUYER TABLE
CREATE TABLE USERID.BUYER

(BUYER ID CHAR(11) NOT NULL,

FIRST-NAME CHAR(20) NOT NULL,

LAST itAME CHAR(20) NOT NULL,

MARITAL STATUS CHAR(1) ,

347

348

GENDER CHAR(1) ,

INCOME DECIMAL(15,2),

WORK PHONE CHAR(12) FOR BIT DATA,

HOME-PHONE CHAR(12) FOR BIT DATA,

PRIMHRY KEY (BUYER ID))

BUYER LOG TABLE
CREATE TABLE USERID.BUYER LOG

(BUYER ID CHAR(llT NOT NULL,

CREATION TIMESTAMP TIMESTAMP,

LAST UPDHTE TIMESTAMP,

PRIMHRY KEY (BUYER ID))

MARlmTING INFO TABLE
ckEATE TABLE USERID.MARKETING INFO

(PROPERTY ID CHAR(5) FTOT NULL,

PRICE DEilMAL(7,0) NOT NULL,

DAYS 0N MARKET SMALLINT,

COMMTSSTON RATE DECIMAL(5,2) ,

DOwN pAyMEirT RATE DEclMALt5,2t,

PRIMhRY KEY i PROPERTY ID))

MULTIDOC TABLE
CREATE TABLE USERID.MULTIDOC

(MULTIDOC ID CHAR(5) NOT NULL,

FILENAME-VARCHAR(254) NOT NULL,

TYPE CHAR(20) NOT NULL,

PRIMARY KEY (MULTIDOC ID))

PREFERENCE TABLH
CREATE TABLE USERID.PREFERENCE

(BUYER ID CHAR(11) NOT NULL,

MAX PRICE DECIMAL(15,2),

MIN-PRICE DECIMAL(15,2),

MAX-SIZE DECIMAL(15,2) ,

MIN-SIZE DECIMAL(15,2),

BEDROOMS SMALLINT,

BATHROOMS SMALLINT,

STORIES SMALLINT,

HEATING CHAR(30),

COOLING CHAR(30),

PRIMARY KEY (BUYER ID))

PROPERTY TABLE
CREATE TABLE USERID.PROPERTY

(PROPERTY ID CHAR(5) NOT NULL,

SIZE DECIMAL(5,0) NOT NULL,

BEDROOMS SMALLINT NOT NULL,

BATHROOMS SMALLINT NOT NULL,

STORIES SMALLINT NOT NULL,

VisualAge for C++ for OS/2

COOLING CHAR(30) NOT NULL,

HEATING CHAR(30) NOT NULL,

DESCRIPTION VARCHAR(512) ,

PRIMARY KEY ((PROPERTY ID))

PROPHRTY ADDRESS TABLE
CREATE TABLE USERID.PROPERTY ADDRESS

(ADDRESS ID CHAR(5) FTOT NULL,

STREET iHAR(40) NOT NULL,

AREA CHAR(40) ,

CITY CHAR(40) NOT NULL,

STATE CHAR(2),

ZIP CODE CHAR(5) FOR BIT DATA,

pRlirARy KEy t t ADDREss ID] i

PROPERTY LOG TABLE-CREATE TABLE USERID.PROPERTY LOG

(PROPERTY ID CHAR(5)-NOT NULL,
DOWNLOAD-TIMESTAMP TIMESTAMP NOT NULL,

LAST UPDHTE TIMESTAMP NOT NULL,

STATbs CHAR(15) NOT NULL,

PRIMARY KEY (PROPERTY ID))

SALE TRANSACTION TABLE
CREATE TABLE USERID.SALE TRANSACTION

(TRANSACTION ID FIMESTAMP NOT NULL,
LAST UPDATE-TIMESTAMP NOT NULL,

AGREEMENT FORM ID INTEGER NOT NULL,

STATUS CHhR(lot NOT NULL,

BUYER ID CHAR(11) NOT NULL,

PROPERTY ID CHAR(5) NOT NULL,

PRIMARY KEY (TRANSACTION ID))

PROP AD LOGVIEW
CREATE VIEW USERID.PROP AD LOG

(PROPERTY ID,

SIZE'

BEDROOMS ,

BATHROOMS ,

AREA'

CITY,

STATE '

STATUS ,

PRICE,

COMMISSION RATE,

DOWN PAYMEffT RATE) AS

SELECT A.PROPERTY ID,

SIZE'

BEDROOMS ,

BATHROOMS ,

Appendi>t C. Database Def inition 349

AREA,

CITY,

STATE'

STATUS ,

PRICE'

COMMISSION RATE,

DOWN PAYMEFTT RATE

FROM USERID.PROPERTY h,

USERID.PROPERTY ADDRESS 8,

USERID.PROPERTY-LOG C

USERID.MARKETING INFO D

WHERE (A.PROPERTY ID=ADDRESS ID AND

A.PROPERTY-ID=C.PROPERTY ID AND

A.PROPERTY-ID=D.PROPERTY-ID)

BtJYER INFO VIEW
CREATE VIEW USERID.BUYER INFO

(BUYER ID,

FIRST-NAME,

LAST ffAME,

I NCOME '

WORK PHONE,

HOME-PHONE,

STREET,

AREA

CITY,

STATE '

ZIP CODE) AS

SELECT BUYER ID,

FIRST-NAME,

LAST frAME,

I NCOME ,

WORK PHONE,

HOME-PHONE,

STREET,

AREA,

CITY'

STATE ,

ZIP CODE

FROM USERIDTBUYER A,

USERID.BUYER ADDRESS 8,

WHERE (BUYER ID=hDDRESS ID)

LIST AREA VIHW
CREATE VIEW USERID.LIST AREA

(AREA) AS
SELECT DISTINCT AREA FROM

USERID.PROPERTY ADDRESS A,

350 VisualAge for C++ for OS/2

USERID.PROPERTY LOG 8

WHERE (ADDRESS ID=PROFERTY ID) AND

(STATUS=TAVAILABLE')-)

Appendix C. Database Definition 351

352 VisualAge for C++ for OS/2

Dictionary

In this appendix we list the parts that you need to build the sample
application.

353

Visual Parts

Visual Parts

Part Name VBB File FileStem Description

AAddressview VRCOMM vrcadrv Address view of buyer and property

ADeleteDialogview VACOMM vrcdel Warning delete dialog view

ALogonview VRCOMM vrclo8v Logon view to connect to the data-
base

ARealsettingsview VRCOMM vrcrsetnv Application settings view

Apropertycreateview VRPROP vrpcrtv View for recording property

ApropertyManagement- VRPROP Vrpmngv Primary view of the property sub-
View system

Apropertysearchparam-eterview VRPROP vrpsrcv Search criteria view for property

ApropertysearchResult-View VRPROP vrpsrrsv Tabular view of properties

Apropertyupdateview VRPROP vrpupdv View for updating property

Apropertyview VRPROP Vrpprpv Property view

AUpLoadview VRSERV vrcuplv Dialog box for generating the export
files

ARealMainview VRMAIN vrmain Main application view

Nonvisual Parts

Part Name VBB File FileStem Description

NumDeconlyKbdHandler KBDHDR kbdhdr General-purpose keyboard handler

NumonlyKbdHandler KBDHDR kbdhdr General-purpose keyboard handler

UppercaseKbdHandler REDHDR kbdhdr General-purpose keyboard handler

AMarketinglnfo VRPROP vrpmrkt Calculate property derived
attributes

List area VRPROP vrpcrtv DACS part of LIST_AREA view

List_areaManager VRPROP Vrpmngv VDACS part of LIST_AREA view

Marketing_info VRPROP vrpsrcv DACS part of MARKETING_INFO
table

Marketing_infoManager VRPROP vrpsrrsv DACS part of MARKETING_INFO
table

354 VisualAge for C++ for OS/2

Nonvisual Parts

Part Nane veB File FileStem Description

Multidoc VRPROP vrpsrrsv DACS part of MULTIDOC table

MultidocManager VRPROP vrpsrrsv DACS part of MUIJTIDOC table

Property VAPROP vrpsrrsv DACS part of PROPERTY table

PropertyManager VRPROP vrpsrrsv DACS part of PROPERTY table

Property_address VRPROP vrpsrTsv DACS part of
PROPERTY ADDRESS table

Property_addressManager VRPROP vrpsrrsv DACS part of
PROPERTY ADDRESS table

Property_log VRPROP vrpsrrsv DACS part of PROPERTY_LOG
table

Property_1ogManager VRPROP vrpsrrsv DACS part of PROPERTY_LOG
table

Property_ad_log VRPROP vrpsrrsv DACS part of PROP_AD_LOGview

Property_ad_1ogManager VRPROP vrpsrrsv DACS part of PROP_AD_LOG
view

Appendix D. class Dictionary 355

Nonvisual Parts

356 VisualAge for C++ for OS/2

e haistings

In this appendix we provide the source code for the Buildclause mem-
ber function of Apropertysearchparameterview (see Figure 138 on
page 358). We also give the source code for the FlatFile class (see
Figure 139 on page 358 and Figure 140 on page 359).

357

Buildclause member function

Buildclause member function

/** I
/**/
/* Declarati.on of the Buildclause member function */
/**/
/* Descri.pti.on: */
/* This method bui.lds an SQL clause from entry controls. */
/* The inputs are selected accordi.ng to the status of */
/* Apropertysearchparametervi.ew check boxes. */
/**/
/** /
publ i c :

Bool ean Apropertysearchparametervi. ew : : BUT.1 dcl ause () ;

Figure 138. Buildclause Member Function: Declaration

Flat File class

/***
* FILE NAME: FLATFILE.h

*
* DESCRIPTION:

* Constant declarati.ons for class:

FlatFile-Thi.s part handles a fi.le

* Warning: Thi.s fi.le was generated by the VisualAge C++
* Visual BUT.lder.

* Modifications to this source file wi.ll be lost when the part
* is regenerated.
** I

#i fndef
1' n c 1 u d e

e n d 1. f
#i fndef
#i ncl ude
#endi f
#1.fndef
#def1.ne
#endi f

ICCONST
<i cconsF . h>

IVBDEFS

<i vbdef; . h>

WND FlatFile

WND-FlatFile VBBASEWINDOWID

Figure 139. Flat File Class: H File

358 VisualAge for C++ for OS/2

Flat File Class

/**************** FILE NAME: FLATFILE.hpp ****************************
**

* DESCRIPTION: *

* Declarati.on of the class: *
* FlatFi.le-This part handles a fi.le *

* Warning: This file was generated by the VisualAge C++ *
* Vi.sual Bui.lder. *

* Modi.ficati.ons to this source file wi.ll be lost when the part *
* i.s regenerated. *
** I

#i.fndef FLATFILE

#define -FLATFILE

class Fl;tFi.le;
#ifndef ISTDNTFY

#inc1ude-<i.stdntfy.hpp>
e n d 1. f

#include "istri.ng.hpp"

#i.nclude ''fstream.h"
#include `'FLATFILE.h"

/*-------------------------------------
/* Align classes on four-byte boundary.
1*-------------------------------------

--------------- * /

#pragma pack(4)

11**
// Class definition for FlatFile
11**
class FlatFile : public IstandardNotifier {

p u b 1 1. c :

//------------------------.-.--
// Constructors / destructors
//-

Figure 140. (Part 1 of 2) Flat File Class: HPP File

Appendix E. Source Listings 359

Flat File Class

Fl atFi l e() ;

vi.rtual ~FlatFi.le();

//--
// publi.c member functl.ons
//-----------------------------------
vi.rtual FlatFi.le & i.ni.ti.all.zepart();

// publi.c member data
//-----------------------------------
static const INoti.fi.cati.onld readyld;

protected:
1/-----------------------------------
// protected member functi.ons
//--------------------------------
virtual Boolean makeconnecti.ons();

pr1'vate:
#i.nclude '`flatfi.le.hpv"

); //FlatFile

/*---------------------------------
/* Resume compi.ler default packing.
/*--*/
#pragma pack()

e n d 1' f

Figure 140. (Part 2 of 2) Flat File Class: HPP File

360 VisualAge for C++ for OS/2

Flat File class

/******************** FILE NAME: FLATFILE.cpp ************************
**

* DESCRIPTION: *

* Class implementati.on of the class: *
* FlatFi.le-Thi.s part handles a fi.1e *

* Warni.ng: Thi.s fi.le was generated by the Vi.sualAge C++ *

* Vi.sual Bui.lder. *

* Modi.ficati.ons to thi.s source fi.le will be lost when the part *
* regenerated. *
** I

#i.fndef INOTIFEV

#i. ncl ude-<i noti. fev . hpp>#endi f

#ifndef I0BSERVR

#include-<i.observF.hpp>#endi.f

#i.fndef ISTDNTFY

#i.nc1ude-<i.stdntfy.hpp>
e n d 1. f

#i.fndef FLATFILE

#i.nclude-"FLATFILE.HPP"

e n d 1. f

#ifndef IVBDEFS

#i.nclude-<i.vbdef;.h>
e n d 1. f

#i.fndef ITRACE

#i.nclude <itrace.hpp>
#endi f

#pragma export (FlatFi.le::readyld)
const INoti.fi.cationld FlatFi.le::readyld = `'FlatFi.le::readyld";

//--
// FlatFile :: FlatFi.le

Figure 141. (Part 1 of 2) Flat File Class: CPP File

Appendix E, Source Listings 361

Flat File Class

#pragma export (FlatFi.le::FlatFile())

Fl atFi l e : : Fl atFi. l e ()

(

} //end constructor

// FlatFile :: ~FlatFile

#pragma export (FlatFi.1e::~FlatFi.1e())

Fl atFi l e : :~Fl atFi l e ()

)

// FlatFile :: I.ni.ti.alizepart

#pragma export (FlatFi.1e::i.ni.tiali.zepart())

Fl atFi 1 e & Fl atFi.1 e : : I. ni. ti. al I. zepart ()

(

makeconnecti. ons () ;

noti. fyobservers (INoti. fi cati. onEvent (readyld , *thi. s)) ;
return *thi.s;

)

// FlatFi.1e :: makeconnecti.ons
//--
#pragma export (FlatFi.le: :makeconnecti.ons())
Bool ean Fl atFi.1 e: :makeconnecti. ons ()

(

thi. s->enabl eNoti fi cati. on () ;
return true;

)

#i.nclude "flatfi.le.cpv"

Figure 141. (Part 2 of 2) Flat File Class: CPP File

362 VisualAge for C++ for OS/2

Flat File Class

// Default Part Code Generati.on begi.ns here...

publ i c :
FlatFile& close() ;

FlatFi.1e& open(Istring newFileName);

Fl atFi le& readLi.ne() ;

Fl atFi 1 e& readFi 1 e() ;

FlatFile& setcurrentLine(const Istrl.ng& aNewLine);
FlatFile& wri.teLine(Istri.ng aLine);
FlatFile& setFileName(const Istri.ng& aFi.leName);

Istring fileName() const;
Istring currentLine() const;
static INotifl.cationld currentLineld;
static INoti.ficationld endofFileld;
static INoti.ficati.onld openedld;

private:
Istring i.FileName;

Istri.ng i.CurrentLine;
fstream aFile;
Boolean eofReached;
Boolean aFilelsopen;

// Default Part Code Generation ends here.

Figure 142. Flat File Class: HIV File

Appendix E. Source Listings 363

Flat File Class

// Default Part Code Generati.on begi.ns here...
INoti.fi.cati.onld FlatFile::openedld = ''FlatFile::opened";
INotificati.onld FlatFi.1e::endofFi.leld = "FlatFile::endofFi.le";
INoti.fi.cati.onld FlatFile::currentLineld = "FlatFi.1e::currentLi.ne

Istri.ng FlatFi.le::fileName() const

(

IFUNCTRACE DEVELOP() ;

return i. Fi.TeName;

)

FlatFi.1e& FlatFi.1e: :setFi.leName(const Istri.ng& aFi.leName)

(

IFUNCTRACE DEVELOP() ;

I.f (I.Fi.leN;me != aFi.leName)

(

i.Fi.leName = aFileName;

)

return *thi.s;
)

Istring FlatFile::currentLi.ne() const

(

IFUNCTRACE DEVELOP() ;

return I.CurrentLi.ne;

)

FlatFi.le& FlatFile: :setcurrentLi.ne(const Istri.ng& aNewLi.ne)

(

IFUNCTRACE DEVELOP() ;

i.CurrentLiFe = aNewLi.ne;

ITRACE DEVELOP(''NewLine ->" + 1.CurrentLi.ne);

noti.fy6bservers(INoti.ficationEvent(FlatFi.le::currentLi.neld,*thi.s))

return *thi.s;
)

Fl at Fi.1 e& Fl atFi 1 e : : readLi. ne ()

(

IFUNCTRACE DEVELOP() ;

Figure 143. (Part 1 of 3) Flat File Class: CPV File

364 VisualAge for C++ for OS/2

Flat File Class

Istri.ng strNewLi.ne = Istri.ng::lineFrom(aFi.le);

ITRACE DEVELOP("Li.ne -> " + strNewLi.ne);

I.f(aFTle.fai.l())

(

eofReached = true;
noti. fyobservers (INoti fi cati. on Event (Fl atFi.1 e : : endofFi.1 el d , *thi. s)) ;

)

else
(

setcurrentLine(strNewLi.ne);

)

return *thi.s;

Fl atFi.1 e& Fl atFi 1 e : : readFi.1 e ()

(

IFUNCTRACE DEVELOP() ;

whi.le(eofReached == false)

(

read Li. n e () ;

} /* endwhi.le */
return *thi.s;

aware that thi.s function wri.tes at the end of file only
Fl atFi.1 e& Fl atFi.1 e : :wri. teLi. ne (Istri ng aLi. ne)

(

IFUNCTRACE DEVELOP() ;

ITRACE DEVELOP("Wri.ti.ng -> " + all.ne);

// savE read poi.nter
long mark = aFi.le.tellg();

// wri.te li.ne (always to end of file)
aLine = aLi.ne + ''\n'';

aFi.le << aLine;

// restore read poi.nter
aFi.le.seekg(mark);
return *this;

)

Figure 143. (Part 2 of 3) Flat File Class: CPV File

Appendi>t E. Source Listings 365

Flat File Class

(

IFUNCTRACE DEVELOP() ;

I.f(aFi.lel=Open)

(

cl ose() ;

) /* endl'f */
ITRACE_DEVELOP("Openi.ng-> " + newFi.leName);

// open fi.le for read and append
aFi.le.open(newFi.leName, i.os::i.n I i.os::app);

I.f(aFi.le.fail() == 0)

(

eofReached = false;
aFi.1elsopen = true;

i.FileName = newFi.leName;

// reset fi.le posi.tion to beginni.ng of file
aFi.le.seekg(0, i.os::beg);

noti. fyobservers (INot i. fi. cati. on Event (Fl atFi. l e : : opened Id , *th i. s)) ;

) /* endif */
else

(

IAccessError exc = IAccessError(''Could not open fi.le: " +

i Fi 1 eName) ;

ITHROW(exc);

)

return *this;
)

FlatFile& FlatFile::close()

(

IFUNCTRACE DEVELOP() ;

I.f(aFi.lel;Open)

(

aFi l e. cl ose () ;

aFi.1elsopen = false;

I.Fi.leName = " ''.

) /* endif */
return *this;

)

// Feature source code generation begi.ns here...

// Feature source code generation ends here.

Figure 143. (Part 3 of 3) Flat File Class: CPV File

366 VisualAge for C++ for OS/2

Glossary

This glossary defines terms and abbrevia-
tions that are used in this book. If you do not
find the term you are looking for, refer to the
IBM Dictionary of Computing, INeIV
York:MCGraw-Hill, 1994.

This glossary includes terms and definitions
fro;rr+ the American National Standard Dic-
tionary for lrrformction Systems, AINSI
X3.172-1990, copyright 1990 by the Ameri-
can National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 1430 Broad-
way, New York, New York 10018.

A
abstract class. A class that provides com-
mon behavior across a set of subclasses but
is not itself designed to have instances that
work. An abstract class represents a concept;
classes derived from it represent implemen-
tations of the concept. For example, IControl
is the abstract base class for control view
windows; the Icanvas and IListBox classes
are controls derived from IControl. An
abstract class must have at least one pure
virtual function.

See also base class.

access. A property of a class that deter-
mines whether a class member is accessible
in an expression or declaration.

action. A specification of a function that a
part can perform. The Visual Builder uses
action specifications to generate connections
between parts. Actions are resolved to mem-
ber function calls in the generated code.

Compare to o#rjbztte and et;e7i£.

Glossary

argument. A data element, or value,
included as part of a member function call.
Arguments provide additional information
that the called member function can use to
perform the requested operation.

attribute. A specification of a property of a
part. For example, a customer part could
have a name attribute and an address
attribute. An attribute can itself be a part
with its own behavior and attributes.

The Visual Builder uses attribute specifica-
tions to generate code to get and set part
properties.

Compare to clcfzo7} and ezje7?£.

attribute-to-action connection. A connec-
tion that starts an action whenever an
attribute's value changes. It is similar to an
event-to-action connection because the
attribute's event ID is used to notify the
action when the value of the attribute
changes.

see also c0777?ecfz07L. compare to ez;e7}£-£O-
action connection.

attributelto-attribute connection. A con-
nection from an attribute of one part to an
attribute of another part. When one
attribute is updated, the other attribute is
updated automatically.

see also c07t7?ecfj07?.

attribute-to-member function connec-
tion. A connection from an attribute of a
part to a member function. When the
attribute undergoes a state change, the
member function is called.

see also c0777}ecfz07i.

367

8
base class. A class from which other classes
or parts are derived. A base class may itself
be derived from another base class.

See also abstract class.

behavior. The set of external characteris-
tics that an object exhibits.

C
caller. An object that sends a member func-
tion call to another object.

Contrast with recezz/er.

category. In the Composition Editor, a
selectable grouping of parts represented by
an icon in the leftmost column. Selecting a
category displays the parts belonging to that
category in the next column.

See also parts palette .

class. An aggregate that can contain func-
tions, types, and user-defined operators, in
addition to data. Classes can be defined hier-
archically, allowing one class to be an expan-
sion of another, and can restrict access to its
members.

Class Hditor. The editor used to specify the
names of files that Visual Builder writes to
when the user generates default code. This
editor can also be used to do the following:

I Enter a description of the part
I Specify a different .vbb file in which to

store the part
I See the name of the part's base class
I Modify the part's default constructor
I Enter additional constructor and

destructor code
I Specify a .lib file for the part
I Specify a resource DLL and ID to assign

an icon to the part
I Specify other files to be included when

the application is built.

368

Corn:pe[re to Composition Edi,tor and Part
Interface Editor.

class hierarchy. A tree-like structure show-
ing relationships among object classes. It
places one abstract class at the top (a base
class) and one or more layers of less abstract
classes below it.

class library. A collection of classes.

class member function. See me7rober fL4J7c-
tion.

client area object. An intermediate win-
dow between a frame window (IFramewin-
dow) and its controls and other child
windows.

client object. An object that requests ser-
vices from other objects.

collection. A set of features in which each
feature is an object.

Common User Access (CUA). An IBM
architecture for designing graphical user
interfaces by use of a set of standard compo-
nents and terminology.

composite part. A part that is composed of
a part and one or more subparts. A compos-
ite part can contain visual parts, nonvisual
parts, or both.

See also nonvi,sual part, part, subpart, imd
Jisual Part.

Composition Editor. A view that is used to
build a graphical user interface and to make
connections between parts.

C;om:pare to Class Editor and Part Interface
Editor.

concrete class. A subclass of an abstract
class that is a specialization of the abstract
class.

connection. A formal, explicit relationship
between parts. Making connections is the
basic technique for building any visual appli-
cation because that defines the way in which

VisualAge for C++ for OS/2

parts communicate with one another. The
visual builder generates the code that then
implements these connections.

See also attribute-to-action connection,
attribute-to-attrtl)ate connection, cttr{bute-
to-member function connection, custom logic
corunection, everul-to-action connection, eueut-
to-attri,bate connection, armd event-to-member
function connection, armd parameter connec-
tion.

const. An attribute of a data object that
declares that the object cannot be changed.

construction from parts. A software
development technology in which applica-
tions are assembled from existing and reus-
able software components, known as parts.

constructor. A special class member func-
tion that has the same name as the class and
is used to construct and possibly initialize
class objects.

CUA. See Common User Access.

culfsored emphasis. The appellation of a
choice when the selection cursor is on that
choice.

custom logic connection. A connection
that causes customized C or C++ code to be
run. This connection can be triggered either
when an attribute's value changes or an
event occurs.

D

data abstraction. A data type with a pri-
vate representation and a public set of oper-
ations. The C++ language uses the concept of
classes to implement data abstraction.

data member. Private data that belongs to
a given object and is hidden from direct
access by all other objects. Data members
can only be accessed by the member func-
tions of the defining class and its subclasses.

Glossary

data model. A combination of the base
classes and parts shipped with the product
and the classes and parts a user saves and
creates. They are saved in a file named
vbbase.vbb.

data object. A storage area used to hold a
value.

declaration. A description that makes an
external object or function available to a
function or a block.

T}HE file. See modul,e defti nition file .

derivation. The creation of a new or
abstract class from an existing or base class.

destructor. A special class member function
that has the same name as the class and is
used to destroy class objects.

"L. See dynamic link library.

dynamic link library (DLL). In OS/2, a
library containing data and code objects that
can be used by programs or applications dur-
ing loading or at run time. Although they are
not part of the program's executable (.exe)
file, they are sometimes required for an .exe
file to run properly®

E

encapsulation. The hiding of a software
object's internal representation. The object
provides an interface that queries and
manipulates the data without exposing its
underlying structure.

event. A specification of a notification from
a part.

Compare to action, attribute, a[nd part euent.

event-to-action connection. A connection
that causes an action to be performed when
an event occurs.

See also connection.

369

event-to-attribute connection. A connec-
tion that changes the value of an attribute
when a certain event occurs.

See also connection.

event-to-member function connection.
A connection from an event of a part to a
member function. When the connected event
occurs, the member function is executed.

See also co7i7tecfjon.

expansion area. The section of a multicell
canvas between the current cell grid and the
outer edge of the canvas. visually, this area
is bounded by the rightmost column gridline
and the bottommost row gridline.

F
feature. (1) A major component of a soft-
ware product that can be installed sepa-
rately. (2) In Visual Builder, an action,
attribute, or event that is available from a
part's part interface and that other parts can
connect to.

full attribute. An attribute that has all of
the behaviors and characteristics that an
attribute can have: a data member, a get
member function, a set member function,
and an event identifier.

free-form surface. The large open area of
the Composition Editor window. The free-
form surface holds the visual parts con-
tained in the views a user builds and repre-
sentations of the nonvisual parts (models)
that an application includes.

a
graphical user interface (GUI). A type of
interface that enables users to communicate
with a program by manipulating graphical
features, rather than by entering commands.
Typically, a graphical user interface includes

370

a combination of graphics, pointing devices,
menu bars and other menus, overlapping
windows, and icons.

aRI±. See graphical user interfiace.

H

handles. Small squares that appear on the
corners of a selected visual part in the visual
builder. Handles are used to resize parts.

Corapa:re to primary selection.

header file. A file that contains system-
defined control information that precedes
user data.

I

inheritance. (1) A mechanism by which an
object class can use the attributes, relation-
ships, and member functions defined in more
abstract classes related to it (its base
classes). (2) An object-oriented programming
technique that allows one to use existing
classes as bases for creating other classes.

instance. Synonym for oty.ecf , a particular
instantiation of a data type.

L

legacy code. Existing code that a user
might have. Legacy applications often have
character-based, nongraphical user inter-
faces; usually they are written in a non-
object-oriented language, such as C or
COBOL.

loaded. The state of the mouse pointer
between the time one selects a part from the
parts palette and deposits the part on the
free-form surface.

VisualAge for C++ for OS/2

M

main part. The part that users see when
they start an application. This is the part
from which the main() function C++ code for
the application is generated.

The main part is a special kind of composite
part.

See also pc!rf and sz/bpc!r£.

member. (1) A data object in a structure or
a union. (2) In C++, classes and structures
can also contain functions and types as
members.

member function. An operator or function
that is declared as a member of a class. A
member function has access to the private
and protected data members and member
functions of objects of its class.

member function call. A communication
from one object to another that requests the
receiving object to execute a member func-
tion.

A member function call consists of a member
function name that indicates the requested
member function and the arguments to be
used in executing the member function. The
member function call always returns some
object to the requesting object as the result
of performing the member function.

Synonym for 77?essc!ge.

member function name. The component of
a member function call that specifies the
requested operation.

message. A request from one object that the
receiving object implement a member func-
tion. Because data is encapsulated and not
directly accessible, a message is the only
way to send data from one object to another.
Each message specifies the name of the
receiving object, the member function to be
implemented, and any arguments the mem-
ber function needs for implementation.

Sryrronyrn for member function call .

Glossary

model. A nonvisual part that represents the
state and behavior of an object, such as a
customer or an account.

Contrast with zJjezu.

module definition file. A file that
describes the code segments within a load
module.

Syrronym for DEF file .

N

nested class. A class defined within the
scope of another class.

nonvisual part. A part that has no visual
representation at run time. A nonvisual part
typically represents some real-world object
that exists in the business environment.

Compare to 777odez. Contrast with I/Zezu and
ui,sual part .

no-event attribute. An attribute that does
not have an event identifier.

no-set attribute. An attribute that does not
have a set member function.

notebook part. A visual part that resem-
bles a bound notebook containing pages sep-
arated into sections by tabbed divider pages.
A user can turn the pages of a notebook or
select the tabs to move from one section to
another.

0
object. (1) A computer representation of
something that a user can work with to per-
form a task. An object can appear as text or
an icon. (2) A collection of data and member
functions that operate on that data, which
together represent a logical entity in the sys-
tem. In object-oriented programming, objects
are grouped into classes that share common
data definitions and member functions. Each
object in the class is said to be an instance of

371

the class. (3) An instance of an object class
consisting of attributes, a data structure,
and operational member functions. It can
represent a person, place, thing, event, or
concept. Each instance has the same proper-
ties, attributes, and member functions as
other instances of the object class, though it
has unique values assigned to its attributes.

object class. A template for defining the
attributes and member functions of an
object. An object class can contain other
object classes. An individual representation
of an object class is called an object.

object factory. A nonvisual part capable of
dynamically creating new instances of a
specified part. For example, during the exe-
cution of an application, an object factory
can create instances of a new class to collect
the data being generated.

object-oriented programming. A pro-
gramming approach based on the concepts of
data abstraction and inheritance. Unlike
procedural programming techniques, object-
oriented programming concentrates on those
data objects that constitute the problem and
how they are manipulated, not on how some-
thing is accomplished.

observer. An object that receives notifica-
tion from a notifier object.

operation. A member function or service
that can be requested of an object.

overloading. An object-oriented program-
ming technique that allows redefinition of
functions and most standard C++ operators
when the functions and operators are used
with class types.

P

palette. See parts palette.

parameter connection. A connection that
satisfies a parameter of an action or member
function by supplying either an attribute's
value or the return value of an action, mem-
ber function, or custom logic. The parameter
is always the source of the connection.

372

see also co7?7tecfj072,.

parent class. The class from which another
part or class inherits data, member func-
tions, or both.

part. A self-contained software object with a
standardized public interface, consisting of a
set of external features that allow the part to
interact with other parts. A part is imple-
mented as a class that supports the INotifier
protocol and has a part interface defined.

The parts on the palette can be used as tem-
plates to create instances or objects.

part event. A representation of a change
that occurs to a part. The events on a part's
interface enable other interested parts to
receive notification when something about
the part changes. For example, a push but-
ton generates an event signaling that it has
been clicked, which might cause another
part to display a window.

part event ID. The name of a part static-
data member used to identify the notifica-
tion that is being signaled.

part interface. A set of external features
that allows a part to interact with other
parts. A part's interface is made up of three
characteristics: attributes, actions, and
events.

Part Interface Hditor. An editor that the
application developer uses to create and
modify attributes, actions, and events, which
together make up the interface of a part.

Co:rn:pe[re to Class Editor and Composition
Editor.

parts palette. A palette control that holds a
collection of visual and nonvisual parts used
in building additional parts for an applica-
tion. The parts palette is organized into ccbfe-
gorjes. Application developers can add parts
to the palette for use in defining applications
or other parts.

preferred features. A subset of the part's
features that appear in a pop-up connection
menu. Generally, they are the features used
most often.

VisualAge for C++ for OS/2

primary selection. In the Composition
Editor, the part used as a base for an action
that affects several parts. For example, an
alignment tool will align all selected parts
with the primary selection. Primary selec-
tion is indicated by closed (solid) selection
handles, whereas the other selected parts
have open selection handles.

See also selection handles .

promote features. Make features of a sub-
part available to be used for making connec-
tions. This applies to subparts that are to be
included in other parts, for example, a sub-
part consisting of three push buttons on a
canvas. If this example subpart is placed in a
frame window, the features of the push but-
tons would have to be promoted to make
them available from within the frame win-
dow.

private. Pertaining to a class member that
is accessible only to member functions and
friends of that class.

process. A program running under OS/2,
along with the resources associated with it
(memory, threads, file system resources, and
so on).

program. (1) One or more files containing a
set of instructions conforming to a particular
programming language syntax. (2) A self-
contained, executable module. Multiple cop-
ies of the same program can be run in differ-
ent processes.

protected. Pertaining to a class member
that is only accessible to member functions
and friends of that class, or to member func-
tions and friends of classes derived from that
class.

prototype. A function declaration or defini-
tion that includes both the return type of the
function and the types of its arguments.

primitive part. A basic building block of
other parts. A primitive part can be rela-
tively complex in terms of the function it pro-
vides.

Glossary

process. A collection of code, data, and
other system resources, including at least
one thread of execution, that performs a
data processing task.

property. A unique characteristic of a part.

pure virtual function. A virtual function
that has a function definition of = 0;.

F3

receiver. The object that receives a member
function call.

Contrast with cozzer.

resource file. A file that contains data used
by an application, such as text strings and
icons.

S
selection handles. In the Composition Edi-
tor, small squares that appear on the corners
of a selected visual part. Selection handles
are used to resize parts.

See Eilso primary selection.

server. A computer that provides services to
multiple users or workstations in a network;
for example, a file server, a print server, or a
mail server.

service. A specific behavior that an object is
responsible for exhibiting.

settings view. A view of a part that pro-
vides a way to display and set the attributes
and options associated with the part.

sticky. In the Composition Editor, the mode
that enables an application developer to add
multiple parts of the same class (for exam-
ple, three push buttons) without going back
and forth between the parts palette and the
free-form surface.

373

structure. A construct that contains an
ordered group of data objects. Unlike an
array, the data objects within a structure can
have varied data types.

subpart. A part that is used to create
another part.

See also norwisual part, part, imd visual
part.

superclass. See cbbsfrcrcf czciss and bczse
class.

T
tear-off attribute. An attribute that an
application developer has exposed to work
with as though it were a stand-alone part.

template. A family of classes or functions
with variable types.

thread. A unit of execution within a process.

toolbar. The strip of icons along the top of
the free-form surface. The toolbar contains
tools to help an application developer con-
struct composite parts.

U

UT. See user interface.

unloaded. The state of the mouse pointer
before a user selects a part from the parts
palette and after the user deposits a part on
the free-form surface. In addition, a user can
unload the mouse pointer by pressing the
Esc key.

user interface (UI). (1) The hardware, soft-
ware, or both that enables a user to interact
with a computer. (2) The term I/ser Z77£erfc!ce
normally refers to the visual presentation
and its underlying software with which a
user interacts.

374

V

variable. (1) A storage place within an
object for a data feature. The data feature is
an object, such as number or date, stored as
an attribute of the containing object. (2) A
part that receives an identity at run time. A
variable by itself contains no data or pro-
gram logic; it must be connected such that it
receives run-time identity from a part else-
where in the application.

view. (1) A visual part, such as a window,
push button, or entry field. (2) A visual rep-
resentation that can display and change the
underlying model objects of an application.
Views are both the end result of developing
an application and the basic unit of composi-
tion of user interfaces.

Compare to zjzsztc!Z pcLr£. Contrast with
rrLod,el .

virtual function. A function of a class that
is declared with the keyword virtual. The
implementation that is executed when a pro-
gram makes a call to a virtual function
depends on the type of the object for which it
is called. This is determined at run time.

visual part. A part that has a visual repre-
sentation at run time. Visual parts, such as
windows, push buttons, and entry fields,
make up the user interface of an application.

Compare to I;jell/. Contrast with 7?o7?I/jsz4cLZ
part.

visual programming tool. A tool that pro-
vides a means for specifying programs
graphically. Application programmers write
applications by manipulating graphical rep-
resentations of components.

W
white space. Space characters, tab charac-
ters, form-feed characters, and new-line
characters.

VisualAge for C++ for OS/2

window. (1) A rectangular area of the
screen with visible boundaries in which
information is displayed. Windows can over-
lap on the screen, giving it the appearance of
one window being on top of another. (2) In
the Composition Editor, a part that can be
used as a container for other visual parts,
such as push buttons.

Glossary 375

376 VisualAge for C++ for OS/2

List of Abbreviations
AZ2A

CAD
CORBA

CRC

DDE
DLL
DSOM

DTS
FJNI

GUI
HPFS

IBM

IDE

IDL

ITSO

IJAIN

LPEX

MMPM/2

NLS

List of Abbreviations

all points addressable

computer-aided design

Common Object Request
Broker Architecture
class-responsibility-collab-
orator
dynamic data exchange
dynamic link library
Distributed System Object
Model

Direct-to-SOM

File Allocation Table

graphical user interface
high-performance file sys-
tem
International Business
Machines Corporation

integrated development
environment
interface definition lan-
guage
International Technical
Support Organization
local area network
Live Parsing Extensible
editor

Multimedia Presentation
Manager/2
National Language Sup-
port
Object Management Group
object modeling technique

obj ect-oriented analysis

object-oriented design

obj ect-oriented software
engineering
Presentation Manager
responsibility-driven
design

System Object Model

Structured Query Lan-
guage
user profile management
Visual Builder binary
Visual Builder export
visual modeling technique

World Wide Web

377

378 VisualAge for C++ for OS/2

Index

A

abstraction 8, 65, 83
ABTICONS.DLL file 179, 181, 198
accelerator key 314
access specifier 260, 263
actor 69-74
application

analysis 5, 13, 14, 15, 61, 62, 63, 67, 69,
77, 82, 83, 89, 92

design 5, 12-15, 62, 82-90, 108, 227,
235, 245, 267

implementation 12-15, 43, 63, 64, 81-
83, 87, 89, 90, 100, 105, 215, 267

problem domain 12,13,14, 63, 65, 69,
74, 87

requirement specification 64, 68, 73, 94,
318

tuning 19, 46, 85
association

multiplicity 91
attribute

derived 90, 91, 214, 215, 354
tearing off 244, 310, 316, 317, 318

8
BIND 142
Boolean part, See IVBBooleanpart
browser

database 47, 50, 332
interacting with Visual Builder 332
QuickBrowse 47, 50, 332

business object 213, 214
business part xxxi, 16, 92, 105

C

canvas
minimum size 149, 150
See also IMulticellcanvas, Isetcanvas,

Icanvas
category

Buttons 168, 193, 202
Composers 152, 159, 161, 168

Index

Data entry 151,162,165,168,181
Frame extensions 174, 232, 254
Lists 140, 152, 184, 186
Models 238, 244, 253, 272
Other 229, 238, 247, 253, 320

CD-ROM 2exiii, 143, 144, 146, 342
check box 189
class

abstract class 39
ancestorthase class 9, 10
attribute 7, 8, 9
delete 282
derived class 9, 49
instance 8, 11, 36, 96, 213
method 28, 36, 90, 93

Class Editor 35, 57, 154, 155, 172, 175, 178,
182,188, 192,196, 199, 202, 205, 208, 211,
217, 251, 258, 282, 333, 334

class interface part
and notification framework 214
See also IDate, ITime

class-responsibility-collaborator card, See
CRC card

client/server 83
code generation file 35, 36, 155, 172, 175,

178,182, 188,196, 199, 202, 205, 208, 211,
333

code trace 40, 54, 259
coding xxix, xxxii, 11, 20, 62, 85
collaborator 12, 75, 76, 86, 236
collection combination list box, See

ICollectionviewcomboBox
collection list box, See ICollectionviewList-

Box
combination list box, See IComboBox
compiler

code optimization 42
locales support 42
memory management 41, 42, 51
precompiled headers 42

composite part 27, 28, 32, 34, 57, 106, 141,
144, 172, 175, 243, 250, 318

Composition Editor
code generation 35
creating a nonvisual part 278, 279
free-form surface 16, 32
palette 32,140,141,147,151,186, 232,

238, 272, 368
toolbar 32

CONFIG.SYS file 54, 111, 119, 121, 125,
180, 319

connection
attribute-to-attribute 29, 214, 220, 236,

238, 240, 244, 254, 256, 264, 269, 318,
326, 329

379

browsing 241, 278
CRC card 12, 75, 227
custom logic 215, 238, 249, 250
event-to-action 29, 236, 242, 248, 257,

265, 275, 277, 281, 282, 326
event-to-attribute 29
event-to-custom logic 30
event-to-member function 30, 256, 260,

263, 284, 286, 287
event-trace 236, 240, 241
initialization 325, 326
logic connection 260
notification framework 324, 325
parameter 31, 248, 251, 254, 267, 272,

286
reordering 241, 242, 257, 275, 277, 281
source 30, 214, 325, 326, 331, 336
target 30, 214, 250, 325, 326, 331
type 29

constructor 35, 48, 141, 272, 368
container, See IVBContainercontrol
copy constructor 141
CPP03PA.SYS file 54
CRC card

drawing connection 227
Cset++ 16
C/C++ 16, 39, 124, 128, 141, 249, 259, 260,

323

D

DACS, See Data Access Builder
Data Access Builder

data identifier 133, 136
session 130
SOM 36
static SQL 36
table mapping 27, 36, 128

Data Access Builder part
data identifier 133
used as variable 236, 246, 251

data integrity 91
data type 7, 39, 91
database connection 246, 247, 253, 304, 312
database management

deleting rows in table 268, 275
retrieving rows from multiple

tables 268
selecting rows in table 267

database manager 131
database, See D82/2
DAXSCL.BND 142
D82/2

380

DATE format 249
TIME format 250

debugger
breakpoint management 51
memory management 52

DEF file 124
design object model 236
destructor 35, 48, 368
DLL 21, 45, 46, 52, 54, 111, 114-120, 123,

125, 132, 133, 135, 179, 181, 198, 200, 368
dynamic link library, See DLL
dynamic memory allocation, See IVBFactory
dynamic model

event-trace diagram 236, 240, 241, 256

E

encapsulation 10, 235
entry field, See IEntryField
environment variable 118, 119, 121
event 4, 28-34, 50, 68, 78, 93, 284, 324, 326,

327, 331, 332, 334
event-driven programming 4
event-trace diagram

connection 236, 240, 241, 256
exception handling

showing an exception 259
try and catch blocks 259

exception handling, See IMessageBox

F

factory obj ect
creating part dynamically 106
See also IVBFactory

FAT file system 107, 124, 132
file allocation table file system, See FAT file

system
file selection 228
flat file class

converting to a part 330
interface 331

fly over help
flyoverHelpHandler 316, 317
response time 316
See also IVBFlyText

font
default 146
setting 149, 150, 200

VisualAge for C++ for OS/2

G

generalization 9
graphic push button 200
graphical user interface, See GUI
group box, See IGroupBox
GUI prototype 64, 70, 84, 90

H

handler
IHandler 221, 225
IKeyboardHandler 222
UppercaseKbdHandler 214, 222, 223,

224
using 221, 225

help
context-sensitive help 38, 172, 238, 248,

318, 319
general help 314

High Performance File System, See HPFS
HPFS 107, 132

I

Icanvas 148, 159, 183, 325, 337
ICC, See compiler
IcheckBox 189
ICLUI 121, 122
ICollectionviewcomboBox 189, 191
ICollectionviewListBox 140, 190, 191
IComboBox 147, 151, 152, 162
icon 179
IContainercolumn 185
Icorv 42
ICSBRS, See browser
ICSDATA, See Data Access Builder
ICSPERF, See Performance Analyzer
IC TRACE DEVELOP 121
IDitastore -90, 137, 139, 142, 203
IDate 249, 250, 306
IDE, See WorkFrame/2
IDSconnectcanvas 137
IEEE POSIX P1003.2 42
IEntryField 147,151,162,168,170,189,

190, 194, 204, 207, 324, 325, 327
IFramewindow 138,148, 172,183, 189, 200,

263, 264, 330
IGraphicpushButton 200
IGroupBox 168, 170
IHelpwindow

Index

IIConcontrol 179
IInfoArea 172, 174, 177, 195, 202, 209
ILINK 45, 46
IMenu 232, 233, 270, 314
IMenultem 232, 270, 314
IMenuseparator 232, 314
IMessageBox

message severity 293
showing an exception 259, 329
tracing the program flow 292

IMMDigitalvideo 230, 266
IMMplayerpanel 166,167,168, 231
implementation phase 15, 16, 215, 267
import file, See VBE file
IMulticellcanvas 147, 148, 153, 179, 183,

209
IMultiLineEdit 165
info area, See IInfoArea
inheritance 8, 9, 15, 17, 25, 47, 48, 57, 80,

85, 123, 124, 128
INoteBook 157
INotifier 324, 326
installing the application 341
instance, See class and part instance
integrated development environment, See

WorkFrame/2
Internet xxxiii
INumericspinButton 162
Iobserver 324, 325, 326, 337
Ipersistentobject 135
IPF compiler 318
IPOManager 136
Iprofile 206, 299, 306
IPushButton 168, 189, 337
Isetcanvas 150, 160, 189, 209
IstandardNotifier 214, 324, 331
IstaticText 151, 161, 167, 170, 181, 198,

202, 204, 209, 211, 325
IstringGenerator 191
iterative technique 13, 90, 93
ITime 249, 250
ITitle 254, 264
IVBBooleanpart

enabling control 260, 284
used with IMessageBox 295, 296

IVBContainercontrol 182, 189
IVBFactory

create method of 272
creating part dynamically 272, 287

IveFileDialog 228
IveFlyText

bubble help 247, 316
using info area 238, 247, 248

IVBLongpart 260
IVBstringpart 260, 286

381

Iviewport 159
IVsequence 291
IWF DEFAULT PROJECT 111

K

key identifier 133, 269
key identifier, See data identifier under Data

Access Builder part
keyboard handler, See handler

L

language 3-7, 10, 15, 21, 32, 36, 40, 41, 43,
85

legacy code 85, 214, 334
LIBPATH 125, 179
linker, See ILINK
LOCALDEF 42
long part, See IVBLongpart
LPEX editor 40, 218

M

menu, See IMenu, IMenultem, IMenu-
Separator

module definition, See DEF file
multicell canvas, See IMulticellcanvas
multimedia, See IMMDigitalvideo
multiple line edit control, See IMultiLine-

Edit

N

naming convention 124, 144, 333
nonvisual part

connecting to a visual part 233
notification framework

dispatchNotificationEvent method 327,
339

enableNotification method 326
handleNotificationFor method 326, 338
notification event 324, 338, 339
notifier 214, 323, 324, 326, 329, 330,

331, 336
notifyobservers method 220, 282, 327,

330, 331, 336, 337

382

observer 220, 323, 324, 325, 326, 327,
329, 330, 337, 339

notifier, See IstandardNotifier
numeric spin button, See INumericspin-

Button

0
object

attribute 6, 8
business object 92, 213, 214
design 15, 83, 84, 89
finding 73
function 6-8, 10
interface 6-8, 10, 224, 324, 331, 332,

335
semantic object 15
technical object 213

Object Modeling Technique, See OMT
object-oriented analysis, See OOA
object-oriented design, See OOD
object-oriented method, See OMT, OOSE,

RDD, VMT
Object-Oriented Software Engineering, See

OOSE
observer, See Iobserver
OMT

class dictionary 74, 75, 84, 353
dynamic model 12, 227
notation 343
static model 12

00A
building use case 68
class dictionary 84
deliverable 63, 82, 84
user interface prototype 64, 70, 71, 84,

90
00D

deliverable 84
object design 15, 83, 84, 89
system design 15, 83-85

00SE
use case 13

Open Class Library
Application Support Class Library 39
Collection Class Library 32, 39
Data Access Builder Class Library 39
Standard Class Libraries 40, 250
User Interface Class Library 32, 38, 118

VisualAge for C++ for OS/2

P

part
abstract class 324, 326
as observer 220, 323-329, 330, 337, 339
asstring method 190, 249, 250
attribute 214, 220, 225, 316
browsing 301
clone 272
constructor 35, 141, 272
dictionary 353
feature source code 217, 334
generating source code 27, 36, 217, 250,

260, 334
import 136, 224, 323, 332, 333, 335
initialization 325, 326, 330
instance 243, 251, 271-276, 287, 291,

302, 311, 315, 328
interface 28, 29, 30, 32, 36, 224, 324,

331, 332, 335
method 215-220, 250-261, 263, 267,

269, 272, 319, 332, 333
naming convention 124, 144, 333
prefix 250, 264, 286, 326
promoting a feature 34,154,156,171,

204, 244, 246, 247, 265, 318, 337
saving 282, 334
tabbing and depth order 152,153, 231

Part Interface Editor
creating actions 33
creating attributes 33, 216
creating events 34
promoting features 34
selecting preferred features 32, 35
user-defined files 217, 251, 258, 260,

263, 282, 287
pattern 55, 65, 72
Performance Analyzer 19, 54
persistent data 92, 108
persistent object, See Ipersistentobject
PM 27, 38, 53, 95, 221, 228, 318
polymorphism 10, 85
pop-up menu 232
portability 37, 38, 42, 107
Presentation Manager, See PM
primitive part 27, 106
problem domain 12, 13, 14, 63, 65, 69, 74, 87
profile

system profile 305
user profile 305

profile, See Iprofile
proffer, See Performance Analyzer
project

action 21

Index

catalog 23, 24
composite 25
customization 20
element 20
inheritance 25
installation script 23
migration 27
source 22
target 20, 22
template 23

Project Smarts 23
promoted feature
public interface 338
push button, See IPushButton

EI

RDD 12, 13
relationship

use 271, 287
requirement specification 64, 68, 73, 94, 318
Responsibility-Driven Design, See RDD
reusability

design consideration 235
using variable part 236

REX 21, 23, 24, 40, 41, 335
role 69-71

S
screen resolution 148, 149, 150, 179, 200
sequence, See IVsequence
set canvas, See Isetcanvas
SmartHouse 28, 30
SOM 36, 41, 43, 44, 47, 51,128
source code xxxi, 20, 36, 40, 44, 47, 70, 93,

132, 191, 214, 215, 217, 330, 334, 357
specialization 9
SQL clause

building 260
in a parameter connection 267
placeholder 260

SQLPREP 112, 114
standard canvas, See Icanvas
static model

aggregation 15
association 79, 80, 94, 102, 141, 156
link 73, 77, 80, 81, 94-99,102, 271, 283,

287
static text, See IstaticText
Sticky mark 151, 232

383

string generator, See IstringGenerator
string part, See IVBstringpart
subsystem 20, 23, 25, 47, 84, 85, 86, 90, 92,

94, 108
System Object Model, See SOM

T

tabbing and depth order 152,153, 231
tool box, See VBSAMPLES.VBB file
traceability 70, 89
transaction management 36, 213

U

use case 12, 68-71
User Interface Class Library

V

variable part
and factory object 272
tearing off an attribute 316
using 243

VBBASE.VBB file 122, 259
VBDAX.VBB file 137, 146, 259
VBE file 136, 224, 335
VBMM.VBB file 146, 166, 230, 259
VBSAMPLE.VBB file 146, 259, 284, 286,

301
viewport 159
views hierarchy 144
views, See visual part
Visual Builder concept 27
Visual Modeling Technique, See VMT
Visual part hierarchy 144
Visual Realty application 59, 66, 69, 74, 83,

86, 88, 90, 91,106,125,143, 206
VisuaIAge C++ 16, 89, 90
Visua]Age Smalltalk 16
VMT

roots 12
visual programming 13

W

window
modal 274, 277, 302, 304, 311, 315

384

modeless 289, 292
WorkFrame/2

Build Smarts facility 26,121
concept 20
integrated development

environment 20
MakeMake facility 20, 22, 26, 115
Project Smarts facility 20, 23, 24, 110,

115, 116
World Wide Web xxvii
wrapper 228, 300, 301

X

X/Open portability 42

VisualAge for C++ for OS/2

LICENSE AGREEMENT AND LIMITED WARRANTY

READ THE FOLLOWING TERMS AND CONDITIONS CAREFULLY BEFORE OPENING
THIS DISK PACKAGE. THIS LEGAL DOCUMENT IS AN AGREEMENT BETWEEN YOU AND
PRENTICE-HALL, INC. (THE "COMPANY"). BY OPENING THIS SEALED DISK PACKAGE, YOU
ARE AGREEING TO BE BOUND BY THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE
WITH THESE TERMS AND CONDITIONS, DO NOT OPEN THE DISK PACKAGE. PROMPTLY
RETURN THE UNOPENED DISK PACKAGE AND ALL ACCOMPANYING ITEMS TO THE PLACE
YOU OBTAINED THEM FOR A FULL REFUND OF ANY SUMS YOU HAVE PAID.

1. GRANT OF LICENSE: In consideration of your payment of the license fee, which is part of
the price you paid for this product, and your agreement to abide by the terms and conditions of this Agree-
ment, the Company grants to you a nonexclusive right to use and display the copy of the enclosed software
program (hereinafter the "SOFTWARE") on a single computer (i.e., with a single CPU) at a single location
so long as you comply with the terms of this Agreement. The Company reserves all rights not expressly
granted to you under this Agreement.

2. OWNERSHIP OF SOFTWARE: You own only the magnetic or physical media (the enclosed
disks) on which the SOFTWARE is recorded or fixed, but the Company retains all the rights, title, and own-
ership to the SOFTWARE recorded on the original disk copy(ies) and all subsequent copies of the SOFT-
WARE, regardless of the forln or media on which the original or other copies may exist. This license is not a
sale of the original SOFTWARE or any copy to you.

3. COPY RESTRICTIONS: This SOFTWARE and the accompanying printed materials and user
manual (the "Documentation") are the subject of copyright. You may gQf copy the Documentation or the
SOFTWARE, except that you may make a single copy of the SOFTWARE for backup or archival purposes
only. You may be held legally responsible for any copying or copyright infringement which is caused or
encouraged by your failure to abide by the terms of this restriction.

4. USE RESTRICTIONS: You may ±±Q± network the SOFTWARE or otherwise use it on more
than one computer or computer terminal at the same time. You may physically transfer the SOFTWARE
from one computer to another provided that the SOFTWARE is used on only one computer at a time. You
may ±±Q± distribute copies of the SOFTWARE or Documentation to others. You may ±Qf reverse engineer,
disassemble, decompile, modify, adapt, translate, or create derivative works based on the SOFTWARE or
the Documentation without the prior written consent of the Company.

5. TRANSFER RESTRICTIONS: The enclosed SOFTWARE is licensed only to you and may
±±Q± be transferred to any one else without the prior written consent of the Company. Any unauthorized trans-
fer of the SOFTWARE shall result in the immediate termination of this Agreement.

6. TERMINATION: This license is effective until terminated. This license will terminate auto-
matically without notice from the Company and become null and void if you fail to comply with any provi-
sions or limitations of this license. Upon termination, you shall destroy the Documentation and all copies of
the SOFTWARE. All provisions of this Agreement as to warranties, limitation of liability, remedies or dam-
ages, and our ownership rights shall survive termination.

7. MISCELLANEOUS: This Agreement shall be construed in accordance with the laws of the
United States of America and the State of New York and shall benefit the Company, its affiliates, and assign-
ees.

8. ILIMITED WARRANTY AND DISCLAIMER OF WARRANTY: The Company warrants
that the SOFTWARE, when properly used in accordance with the Documentation, will operate in substantial
conformity with the description of the SOFTWARE set forth in the Documentation. The Company does not
warrant that the SOFTWARE will meet your requirements or that the operation of the SOFTWARE will be

uninterrupted or error-free. The Company warrants that the media on which the SOFTWARE is delivered
shall be free from defects in materials and workmanship under normal use for a period of thirty (30) days
from the date of your purchase. Your only remedy and the Company's only obligation under these limited
warranties is, at the Company's option, return of the waITanted item for a refund of any amounts paid by you
or replacement of the item. Any replacement of SOFTWARE or media under the warranties shall not extend
the original warranty period. The limited warranty set forth above shall not apply to any SOFTWARE which
the Company determines in good faith has been subject to misuse, neglect, improper installation, repair,
alteration, or damage by you. EXCEPT FOR THE EXPRESSED WARRANTIES SET FORTH ABOVE,
THE COMPANY DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. EXCEPT FOR THE EXPRESS WARRANTY SET FORTH ABOVE, THE COM-
PANY DOES NOT WARRANT, GUARANTEE, OR MARE ANY REPRESENTATION REGARDING
THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS CORRECTNESS,
ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE.

IN NO EVENT, SHALL THE COMPANY OR ITS EMPLOYEES, AGENTS, SUPPLIERS,
OR CONTRACTORS BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH THE LICENSE GRANTED UNDER
THIS AGREEMENT, OR FOR LOSS OF USE, LOSS OF DATA, LOSS OF INCOME OR PROFIT, OR
OTHER LOSSES, SUSTAINED AS A RESULT OF INJURY TO ANY PERSON, OR LOSS OF OR
DAMAGE TO PROPERTY, OR CLAIMS OF THIRD PARTIES, EVEN IF THE COMPANY OR AN
AUTHORIZED REPRESENTATIVE OF THE COMPANY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES. IN NO EVENT SHALL LIABILITY OF THE COMPANY FOR DAMAGES
WITH RESPECT TO THE SOFTWARE EXCEED THE AMOUNTS ACTUALLY PAID BY YOU, IF
ANY, FOR THE SOFTWARE.

SOME JURISDICTIONS DO NOT ALLOW THE LIMITATION OF IMPLIED WARRAN-
TIES OR LIABILITY FOR INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES,
SO THE ABOVE LIMITATIONS MAY NOT ALWAYS APPLY. THE WARRANTIES IN THIS AGREE-
MENT GIVE YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS
WHICH VARY IN ACCORDANCE WITH LOCAL LAW.

ACKNOWLEDGMENT

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND
IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU ALSO AGREE THAT
THIS AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT
BETWEEN YOU AND THE COMPANY AND SUPERSEDES ALL PROPOSALS OR PRIOR AGREE-
MENTS, ORAL, OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN YOU AND THE
COMPANY OR ANY REPRESENTATIVE OF THE COMPANY RELATING TO THE SUBJECT MAT-
TER OF THIS AGREEMENT.

Should you have any questions concerning this Agreement or if you wish to contact the Com-
pany for any reason, please contact in writing at the address below or call the at the telephone number pro-
vided.

PTR Customer Service
Prentice Hall PTR
One Lake Street
Upper Saddle River, New Jersey 07458
Telephone: 201-236-7105

IBM EVALUATION AGREEMENT

This is a no charge Evaluation License ("License") between you and Intemational Business Machines Cor-

poration ("IBM") for the evaluation of IBM's software and related documentation. ("Program")

IBM grants you a non-exclusive, non-transferable license to the Program only to enable you to evaluate the

potential usefulness of the Program to you. You may not use the Program for any other purpose and you may
not distribute any part of it, either alone or with any of your software products.

IBM retains ownership of the Program and any copies you make of it. You may use the Program on one (1)
machine only.

You may not decompile, disassemble or otherwise attempt to translate or seek to gain access to the Pro-

gram's source code.

The term of your License will be from the date of first installation of the Program, and will terminate 60 days
later, unless otherwise specified. THE PROGRAM WILL STOP FUNCTIONING WHEN THE LICENSE
TERM EXPIRES. You should therefore take precautions to avoid any loss of data that might result. You
must destroy and/or delete all copies you have made of the Program within ten (10) days of the expiry of

your License.

If you are interested in continuing to use the Program after the end of your License, you must place an order
for a full license to the Program and pay the applicable license fee. In that event, your use of the Program
will be governed by the provisions of the applicable IBM license for the Program.

IBM accepts no liability for damages you may suffer as a result of your use of the Program. In no event will
IBM be liable for any indirect, special or consequential damages, even if IBM has been advised of the possi-
bility of their occurrence.

YOU UNDERSTAND THAT THE PROGRAM IS BEING PROVIDED TO YOU "AS IS", WITHOUT
ANY WARRANTIES (EXPRESS OR IMPLIED) WHATSOEVER, INCLUDING BUT NOT LIMITED
TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, PERFORMANCE OR FIT-
NESS FOR ANY PARTICULAR PURPOSE. Some jurisdictions do not allow the exclusion or limitation of
warranties or consequential or incidental damages, so the above may not apply to you.

IBM may terminate your License at any time if you are in breach of any of its terms.

This License will be governed by and interpreted in accordance with the laws of the State of New York.

This License is the only understanding and agreement we have for your use of the Program. It supersedes all
other communications, understandings or agreements we may have had prior to this License.

Software Requirements
- OS/2 V2.11 or higher (OS/2 Waap recommended)

- To use Data Access Builder, D82/2 V1.2 or higher

(D82V2 trial version provided on the CDROM)

Hardware Requfirements
-Processor: 386 minimum (486 or higher strongly recommended)

(for 386 machines, a 387 coprocessor is highly recommended
for floating-point operations)

-Display: VGA minimum (SVGA recommended)

-RAM: C development -8M minimum,12M recommended
C++ development - 12M minimum,16M recommended
visual C++ development - 16M minimum, 24M recommended

-Diskspace: 91MB forcompilerandtools
102MB for samples and online information
30MB for swap space (minimum)

Software Installation

- Start OS/2

- Open an OS/2 session

- Switch to CD-ROM drive

- Type Install

- Press ENTER

	Cover
	Dedication
	Contents
	Figures
	Tables
	Special Notices
	Preface
	About the Authors
	Acknowledgments
	Part 1 - Introduction to the VisualAge for C++ Enviroment
	Chapter 1 - VisualAge for C++ and Application Development
	Chapter 2 - Getting Starter in a VisualAge for C++ Environment

	Part 2 - Developing with VisualAge for C++
	Chapter 3 - Analysts at Work
	Chapter 4 - Designers at Work

	Part 3 - Building the Visual Reality Application
	Chapter 5 - Setting Up the Development Enviroment
	Chapter 6 - Mapping Relational Tables Using Data Access Builder
	Chapter 7 - Creating Visual Parts
	Chapter 8 - Creating Nonvisual Parts
	Chapter 9 - Connecting the Parts
	Chapter 10 - If You Want to Know More about Visual Builder...

	Appendix
	A - Installing the Application
	B - OMT Notation
	C - Database Definition
	D - Class Dictionary
	E - Source Listing

	Glossary
	List of Abbreviations
	Index
	Back Cover

